Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45860 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6485 | 0.7967 | 0.8141 | [M:[0.696, 0.696], q:[0.4802, 0.8238], qb:[0.8238, 0.4626], phi:[0.3524]] | [M:[[-4, -3, 1], [-3, -4, 1]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | ${}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | 2*t^2.088 + t^2.114 + t^2.828 + t^3.833 + 2*t^3.859 + t^3.886 + t^3.939 + 3*t^4.176 + 2*t^4.202 + t^4.229 + 2*t^4.916 + 2*t^4.943 + t^5.657 + 2*t^5.921 + 4*t^5.947 + 2*t^5.974 - 2*t^6. + 4*t^6.264 + 3*t^6.29 + 2*t^6.317 + t^6.343 + t^6.661 + 2*t^6.688 + t^6.714 + t^6.767 + 2*t^7.004 + 2*t^7.031 - 2*t^7.084 - t^7.11 + t^7.665 + 2*t^7.692 + 3*t^7.718 + 2*t^7.745 + t^7.771 + t^7.877 + 3*t^8.008 + 6*t^8.035 + 3*t^8.061 - 4*t^8.088 - 2*t^8.114 - 2*t^8.141 + 5*t^8.352 + 4*t^8.378 + 3*t^8.405 + 2*t^8.431 + t^8.458 + t^8.485 + 2*t^8.749 + 4*t^8.775 + 2*t^8.802 - 3*t^8.828 - 2*t^8.855 - t^4.057/y - (2*t^6.145)/y - t^6.172/y + t^7.176/y + (2*t^7.202)/y + (2*t^7.916)/y + (2*t^7.943)/y + (2*t^7.969)/y - (3*t^8.233)/y - (2*t^8.259)/y - t^8.286/y + (2*t^8.921)/y + (5*t^8.947)/y + (4*t^8.974)/y - t^4.057*y - 2*t^6.145*y - t^6.172*y + t^7.176*y + 2*t^7.202*y + 2*t^7.916*y + 2*t^7.943*y + 2*t^7.969*y - 3*t^8.233*y - 2*t^8.259*y - t^8.286*y + 2*t^8.921*y + 5*t^8.947*y + 4*t^8.974*y | (g3*t^2.088)/(g1^3*g2^4) + (g3*t^2.088)/(g1^4*g2^3) + t^2.114/(g1^2*g2^2) + g1^3*g2^3*t^2.828 + (g3^2*t^3.833)/(g1*g2) + g1*g3*t^3.859 + g2*g3*t^3.859 + g1^2*g2^2*t^3.886 + (g1^5*g2^5*t^3.939)/g3^2 + (g3^2*t^4.176)/(g1^6*g2^8) + (g3^2*t^4.176)/(g1^7*g2^7) + (g3^2*t^4.176)/(g1^8*g2^6) + (g3*t^4.202)/(g1^5*g2^6) + (g3*t^4.202)/(g1^6*g2^5) + t^4.229/(g1^4*g2^4) + (g3*t^4.916)/g1 + (g3*t^4.916)/g2 + 2*g1*g2*t^4.943 + g1^6*g2^6*t^5.657 + (g3^3*t^5.921)/(g1^4*g2^5) + (g3^3*t^5.921)/(g1^5*g2^4) + (g3^2*t^5.947)/(g1^2*g2^4) + (2*g3^2*t^5.947)/(g1^3*g2^3) + (g3^2*t^5.947)/(g1^4*g2^2) + (g3*t^5.974)/(g1*g2^2) + (g3*t^5.974)/(g1^2*g2) - 2*t^6. + (g3^3*t^6.264)/(g1^9*g2^12) + (g3^3*t^6.264)/(g1^10*g2^11) + (g3^3*t^6.264)/(g1^11*g2^10) + (g3^3*t^6.264)/(g1^12*g2^9) + (g3^2*t^6.29)/(g1^8*g2^10) + (g3^2*t^6.29)/(g1^9*g2^9) + (g3^2*t^6.29)/(g1^10*g2^8) + (g3*t^6.317)/(g1^7*g2^8) + (g3*t^6.317)/(g1^8*g2^7) + t^6.343/(g1^6*g2^6) + g1^2*g2^2*g3^2*t^6.661 + g1^4*g2^3*g3*t^6.688 + g1^3*g2^4*g3*t^6.688 + g1^5*g2^5*t^6.714 + (g1^8*g2^8*t^6.767)/g3^2 + (g3^2*t^7.004)/(g1^3*g2^5) + (g3^2*t^7.004)/(g1^5*g2^3) + (g3*t^7.031)/(g1^2*g2^3) + (g3*t^7.031)/(g1^3*g2^2) - (g1*t^7.084)/g3 - (g2*t^7.084)/g3 - (g1^2*g2^2*t^7.11)/g3^2 + (g3^4*t^7.665)/(g1^2*g2^2) + (g3^3*t^7.692)/g1 + (g3^3*t^7.692)/g2 + g1^2*g3^2*t^7.718 + g1*g2*g3^2*t^7.718 + g2^2*g3^2*t^7.718 + g1^3*g2^2*g3*t^7.745 + g1^2*g2^3*g3*t^7.745 + g1^4*g2^4*t^7.771 + (g1^10*g2^10*t^7.877)/g3^4 + (g3^4*t^8.008)/(g1^7*g2^9) + (g3^4*t^8.008)/(g1^8*g2^8) + (g3^4*t^8.008)/(g1^9*g2^7) + (g3^3*t^8.035)/(g1^5*g2^8) + (2*g3^3*t^8.035)/(g1^6*g2^7) + (2*g3^3*t^8.035)/(g1^7*g2^6) + (g3^3*t^8.035)/(g1^8*g2^5) + (g3^2*t^8.061)/(g1^4*g2^6) + (g3^2*t^8.061)/(g1^5*g2^5) + (g3^2*t^8.061)/(g1^6*g2^4) - (2*g3*t^8.088)/(g1^3*g2^4) - (2*g3*t^8.088)/(g1^4*g2^3) - (2*t^8.114)/(g1^2*g2^2) - t^8.141/(g1*g3) - t^8.141/(g2*g3) + (g3^4*t^8.352)/(g1^12*g2^16) + (g3^4*t^8.352)/(g1^13*g2^15) + (g3^4*t^8.352)/(g1^14*g2^14) + (g3^4*t^8.352)/(g1^15*g2^13) + (g3^4*t^8.352)/(g1^16*g2^12) + (g3^3*t^8.378)/(g1^11*g2^14) + (g3^3*t^8.378)/(g1^12*g2^13) + (g3^3*t^8.378)/(g1^13*g2^12) + (g3^3*t^8.378)/(g1^14*g2^11) + (g3^2*t^8.405)/(g1^10*g2^12) + (g3^2*t^8.405)/(g1^11*g2^11) + (g3^2*t^8.405)/(g1^12*g2^10) + (g3*t^8.431)/(g1^9*g2^10) + (g3*t^8.431)/(g1^10*g2^9) + t^8.458/(g1^8*g2^8) + g1^9*g2^9*t^8.485 + (g3^3*t^8.749)/(g1*g2^2) + (g3^3*t^8.749)/(g1^2*g2) + 2*g3^2*t^8.775 + (g1*g3^2*t^8.775)/g2 + (g2*g3^2*t^8.775)/g1 + g1^2*g2*g3*t^8.802 + g1*g2^2*g3*t^8.802 - 3*g1^3*g2^3*t^8.828 - (g1^5*g2^4*t^8.855)/g3 - (g1^4*g2^5*t^8.855)/g3 - t^4.057/(g1*g2*y) - (g3*t^6.145)/(g1^4*g2^5*y) - (g3*t^6.145)/(g1^5*g2^4*y) - t^6.172/(g1^3*g2^3*y) + (g3^2*t^7.176)/(g1^7*g2^7*y) + (g3*t^7.202)/(g1^5*g2^6*y) + (g3*t^7.202)/(g1^6*g2^5*y) + (g3*t^7.916)/(g1*y) + (g3*t^7.916)/(g2*y) + (2*g1*g2*t^7.943)/y + (g1^3*g2^2*t^7.969)/(g3*y) + (g1^2*g2^3*t^7.969)/(g3*y) - (g3^2*t^8.233)/(g1^7*g2^9*y) - (g3^2*t^8.233)/(g1^8*g2^8*y) - (g3^2*t^8.233)/(g1^9*g2^7*y) - (g3*t^8.259)/(g1^6*g2^7*y) - (g3*t^8.259)/(g1^7*g2^6*y) - t^8.286/(g1^5*g2^5*y) + (g3^3*t^8.921)/(g1^4*g2^5*y) + (g3^3*t^8.921)/(g1^5*g2^4*y) + (g3^2*t^8.947)/(g1^2*g2^4*y) + (3*g3^2*t^8.947)/(g1^3*g2^3*y) + (g3^2*t^8.947)/(g1^4*g2^2*y) + (2*g3*t^8.974)/(g1*g2^2*y) + (2*g3*t^8.974)/(g1^2*g2*y) - (t^4.057*y)/(g1*g2) - (g3*t^6.145*y)/(g1^4*g2^5) - (g3*t^6.145*y)/(g1^5*g2^4) - (t^6.172*y)/(g1^3*g2^3) + (g3^2*t^7.176*y)/(g1^7*g2^7) + (g3*t^7.202*y)/(g1^5*g2^6) + (g3*t^7.202*y)/(g1^6*g2^5) + (g3*t^7.916*y)/g1 + (g3*t^7.916*y)/g2 + 2*g1*g2*t^7.943*y + (g1^3*g2^2*t^7.969*y)/g3 + (g1^2*g2^3*t^7.969*y)/g3 - (g3^2*t^8.233*y)/(g1^7*g2^9) - (g3^2*t^8.233*y)/(g1^8*g2^8) - (g3^2*t^8.233*y)/(g1^9*g2^7) - (g3*t^8.259*y)/(g1^6*g2^7) - (g3*t^8.259*y)/(g1^7*g2^6) - (t^8.286*y)/(g1^5*g2^5) + (g3^3*t^8.921*y)/(g1^4*g2^5) + (g3^3*t^8.921*y)/(g1^5*g2^4) + (g3^2*t^8.947*y)/(g1^2*g2^4) + (3*g3^2*t^8.947*y)/(g1^3*g2^3) + (g3^2*t^8.947*y)/(g1^4*g2^2) + (2*g3*t^8.974*y)/(g1*g2^2) + (2*g3*t^8.974*y)/(g1^2*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
45927 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6484 | 0.7955 | 0.815 | [M:[0.6966, 0.7061], q:[0.4744, 0.829], qb:[0.8195, 0.4712], phi:[0.3515]] | t^2.09 + t^2.109 + t^2.118 + t^2.837 + t^3.872 + t^3.882 + t^3.891 + 2*t^3.901 + t^4.18 + t^4.199 + t^4.208 + t^4.218 + t^4.227 + t^4.237 + t^4.927 + 2*t^4.946 + t^4.955 + t^5.673 + t^5.962 + t^5.971 + t^5.981 + 2*t^5.99 - t^6. - t^4.054/y - t^4.054*y | detail | |
45888 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.5427 | 0.6891 | 0.7875 | [M:[0.7357, 1.1204], q:[0.2918, 0.9724], qb:[0.5878, 0.3888], phi:[0.4398]] | t^2.042 + t^2.207 + t^2.639 + t^2.93 + t^3.07 + 2*t^3.361 + t^3.652 + 2*t^4.084 + t^4.249 + t^4.414 + 2*t^4.681 + t^4.846 + t^4.971 + t^5.112 + t^5.137 + t^5.278 + 2*t^5.403 + 2*t^5.568 + t^5.694 + 2*t^5.859 - t^6. - t^4.319/y - t^4.319*y | detail | |
45886 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ | 0.6693 | 0.8377 | 0.7989 | [M:[0.6919, 0.6919, 0.6801], q:[0.4841, 0.8241], qb:[0.8241, 0.4605], phi:[0.3518]] | t^2.04 + 2*t^2.076 + t^2.111 + t^2.834 + t^3.818 + 2*t^3.854 + t^3.889 + t^4.08 + 2*t^4.116 + 4*t^4.151 + 2*t^4.187 + t^4.222 + t^4.874 + 2*t^4.909 + 2*t^4.945 + t^5.667 + t^5.858 + 4*t^5.894 + 5*t^5.929 + 2*t^5.965 - 2*t^6. - t^4.055/y - t^4.055*y | detail | |
45915 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6281 | 0.7586 | 0.8281 | [M:[0.7009, 0.7009, 1.2889], q:[0.4769, 0.8222], qb:[0.8222, 0.4566], phi:[0.3555]] | 2*t^2.103 + t^2.8 + t^3.806 + 2*t^3.836 + 2*t^3.867 + t^3.928 + 3*t^4.205 + 2*t^4.903 + t^4.933 + t^5.6 + 2*t^5.909 + 3*t^5.939 + 2*t^5.97 - 3*t^6. - t^4.067/y - t^4.067*y | detail | |
45872 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ | 0.669 | 0.8353 | 0.8009 | [M:[0.7026, 0.6881, 0.6965], q:[0.4795, 0.8179], qb:[0.8324, 0.4712], phi:[0.3498]] | t^2.064 + t^2.089 + t^2.099 + t^2.108 + t^2.852 + t^3.867 + t^3.876 + t^3.901 + t^3.926 + t^4.129 + t^4.154 + t^4.163 + t^4.172 + t^4.179 + t^4.188 + 2*t^4.197 + t^4.206 + t^4.216 + t^4.916 + t^4.941 + 2*t^4.951 + t^4.96 + t^5.704 + t^5.931 + t^5.941 + t^5.956 + 2*t^5.966 + t^5.975 + t^5.984 + t^5.991 - 2*t^6. - t^4.049/y - t^4.049*y | detail | |
45876 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 0.4925 | 0.5698 | 0.8643 | [X:[1.5254], M:[0.7119, 0.7119], q:[0.4067, 0.8813], qb:[0.8813, 0.8813], phi:[0.2373]] | 2*t^2.136 + t^3.152 + t^3.864 + 3*t^4.272 + t^4.576 + 2*t^5.288 - 2*t^6. - t^3.712/y - (2*t^5.848)/y - t^3.712*y - 2*t^5.848*y | detail | |
45893 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6485 | 0.7962 | 0.8145 | [M:[0.7041, 0.6924], q:[0.4778, 0.8181], qb:[0.8298, 0.4661], phi:[0.352]] | t^2.077 + 2*t^2.112 + t^2.832 + 2*t^3.853 + 2*t^3.888 + t^3.923 + t^4.154 + 2*t^4.189 + 3*t^4.224 + t^4.909 + 3*t^4.944 + t^5.664 + 2*t^5.93 + 4*t^5.965 - t^4.056/y - t^4.056*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45838 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 0.7406 | 0.8961 | 0.8265 | [M:[0.7808, 0.7808], q:[0.6298, 0.5894], qb:[0.5894, 0.5527], phi:[0.4097]] | 2*t^2.342 + t^2.458 + 2*t^3.426 + t^3.536 + t^3.547 + t^4.545 + 2*t^4.655 + 3*t^4.685 + 3*t^4.765 + t^4.776 + 2*t^4.801 + 2*t^4.887 + t^4.916 + t^5.008 + 3*t^5.769 + 2*t^5.884 + t^5.995 - 6*t^6. - t^4.229/y - t^4.229*y | detail |