Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55739 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ + $ q_1\tilde{q}_2$ 0.7406 0.8961 0.8265 [X:[], M:[0.7808, 0.7808], q:[0.7952, 0.6298, 0.5894], qb:[0.5894, 1.2048, 0.5527], phi:[0.4097]] [X:[], M:[[0, 1, 8, 1], [1, 0, 8, 1]], q:[[0, 0, -1, 0], [-1, -1, -8, -1], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, 2, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_3$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2q_3$, $ \phi_1^4$, $ \phi_1q_2^2$, $ M_2q_3\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ \phi_1^2q_3\tilde{q}_3$, $ \phi_1^2\tilde{q}_1\tilde{q}_3$, $ \phi_1^2q_3\tilde{q}_1$ . -6 2*t^2.34 + t^2.46 + 2*t^3.43 + t^3.54 + t^3.55 + t^4.54 + 2*t^4.66 + 3*t^4.68 + 3*t^4.77 + t^4.78 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5.01 + 3*t^5.77 + 2*t^5.88 + t^5.99 - 6*t^6. + t^6.01 - 2*t^6.11 - 2*t^6.12 - t^6.23 + 3*t^6.85 + 2*t^6.89 + 2*t^6.96 + 2*t^6.97 + 4*t^7. + 4*t^7.03 + t^7.07 + t^7.09 + 6*t^7.11 + 3*t^7.14 + 3*t^7.22 + 2*t^7.26 + t^7.37 - t^7.46 + t^7.47 + 2*t^7.97 + 4*t^8.08 + 4*t^8.11 + 6*t^8.19 + 2*t^8.23 + 3*t^8.3 - 8*t^8.34 - 2*t^8.45 - 6*t^8.46 - t^8.55 + t^8.56 - 2*t^8.57 - 2*t^8.58 + t^8.68 - t^8.69 - t^4.23/y - (2*t^6.57)/y - t^6.69/y + t^7.68/y + t^7.77/y + (2*t^7.8)/y + (2*t^7.89)/y + (4*t^8.77)/y + (4*t^8.88)/y + (2*t^8.89)/y - (3*t^8.91)/y + t^8.99/y - t^4.23*y - 2*t^6.57*y - t^6.69*y + t^7.68*y + t^7.77*y + 2*t^7.8*y + 2*t^7.89*y + 4*t^8.77*y + 4*t^8.88*y + 2*t^8.89*y - 3*t^8.91*y + t^8.99*y g1*g3^8*g4*t^2.34 + g2*g3^8*g4*t^2.34 + g3^4*t^2.46 + g1*g4*t^3.43 + g2*g4*t^3.43 + g1*g2*t^3.54 + t^3.55/(g1*g2*g3^8) + g3^2*g4^2*t^4.54 + g1*g3^2*g4*t^4.66 + g2*g3^2*g4*t^4.66 + g1^2*g3^16*g4^2*t^4.68 + g1*g2*g3^16*g4^2*t^4.68 + g2^2*g3^16*g4^2*t^4.68 + g1^2*g3^2*t^4.77 + g1*g2*g3^2*t^4.77 + g2^2*g3^2*t^4.77 + t^4.78/(g1*g2*g3^6) + g1*g3^12*g4*t^4.8 + g2*g3^12*g4*t^4.8 + t^4.89/(g1*g3^6*g4) + t^4.89/(g2*g3^6*g4) + g3^8*t^4.92 + t^5.01/(g1^2*g2^2*g3^14*g4^2) + g1^2*g3^8*g4^2*t^5.77 + g1*g2*g3^8*g4^2*t^5.77 + g2^2*g3^8*g4^2*t^5.77 + g1*g3^4*g4*t^5.88 + g2*g3^4*g4*t^5.88 + g1*g2*g3^4*t^5.99 - 4*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 + t^6.01/(g1*g2*g3^4) - (g1*t^6.11)/g4 - (g2*t^6.11)/g4 - t^6.12/(g1*g2^2*g3^8*g4) - t^6.12/(g1^2*g2*g3^8*g4) - t^6.23/(g1*g2*g3^8*g4^2) + g1^2*g4^2*t^6.85 + g1*g2*g4^2*t^6.85 + g2^2*g4^2*t^6.85 + g1*g3^10*g4^3*t^6.89 + g2*g3^10*g4^3*t^6.89 + g1^2*g2*g4*t^6.96 + g1*g2^2*g4*t^6.96 + (g4*t^6.97)/(g1*g3^8) + (g4*t^6.97)/(g2*g3^8) + g3^6*g4^2*t^7. + g1^2*g3^10*g4^2*t^7. + g1*g2*g3^10*g4^2*t^7. + g2^2*g3^10*g4^2*t^7. + g1^3*g3^24*g4^3*t^7.03 + g1^2*g2*g3^24*g4^3*t^7.03 + g1*g2^2*g3^24*g4^3*t^7.03 + g2^3*g3^24*g4^3*t^7.03 + g1^2*g2^2*t^7.07 + t^7.09/(g1^2*g2^2*g3^16) + g1*g3^6*g4*t^7.11 + g2*g3^6*g4*t^7.11 + g1^3*g3^10*g4*t^7.11 + g1^2*g2*g3^10*g4*t^7.11 + g1*g2^2*g3^10*g4*t^7.11 + g2^3*g3^10*g4*t^7.11 + g1^2*g3^20*g4^2*t^7.14 + g1*g2*g3^20*g4^2*t^7.14 + g2^2*g3^20*g4^2*t^7.14 + g1^2*g3^6*t^7.22 + g1*g2*g3^6*t^7.22 + g2^2*g3^6*t^7.22 + t^7.23/(g1*g2*g3^2) - g3^2*t^7.23 + g1*g3^16*g4*t^7.26 + g2*g3^16*g4*t^7.26 + t^7.34/(g1*g3^2*g4) + t^7.34/(g2*g3^2*g4) - (g1*g3^2*t^7.34)/g4 - (g2*g3^2*t^7.34)/g4 + g3^12*t^7.37 - t^7.46/(g1*g2*g3^6*g4^2) + t^7.47/(g1^2*g2^2*g3^10*g4^2) + g1*g3^2*g4^3*t^7.97 + g2*g3^2*g4^3*t^7.97 + g1^2*g3^2*g4^2*t^8.08 + 2*g1*g2*g3^2*g4^2*t^8.08 + g2^2*g3^2*g4^2*t^8.08 + (g4^2*t^8.09)/(g1*g2*g3^6) - (g4^2*t^8.09)/g3^2 + g1^3*g3^16*g4^3*t^8.11 + g1^2*g2*g3^16*g4^3*t^8.11 + g1*g2^2*g3^16*g4^3*t^8.11 + g2^3*g3^16*g4^3*t^8.11 + g1^3*g3^2*g4*t^8.19 + 2*g1^2*g2*g3^2*g4*t^8.19 + 2*g1*g2^2*g3^2*g4*t^8.19 + g2^3*g3^2*g4*t^8.19 + (g4*t^8.2)/(g1*g3^6) + (g4*t^8.2)/(g2*g3^6) - (g1*g4*t^8.2)/g3^2 - (g2*g4*t^8.2)/g3^2 - g3^8*g4^2*t^8.23 + g1^2*g3^12*g4^2*t^8.23 + g1*g2*g3^12*g4^2*t^8.23 + g2^2*g3^12*g4^2*t^8.23 + g1^3*g2*g3^2*t^8.3 + g1^2*g2^2*g3^2*t^8.3 + g1*g2^3*g3^2*t^8.3 + t^8.31/g3^6 + (g1*t^8.31)/(g2*g3^6) + (g2*t^8.31)/(g1*g3^6) - (g1^2*t^8.31)/g3^2 - (g1*g2*t^8.31)/g3^2 - (g2^2*t^8.31)/g3^2 + t^8.32/(g1^2*g2^2*g3^14) - t^8.32/(g1*g2*g3^10) - 3*g1*g3^8*g4*t^8.34 - (g1^2*g3^8*g4*t^8.34)/g2 - 3*g2*g3^8*g4*t^8.34 - (g2^2*g3^8*g4*t^8.34)/g1 + t^8.43/(g1*g2^2*g3^14*g4) + t^8.43/(g1^2*g2*g3^14*g4) - t^8.43/(g1*g3^10*g4) - t^8.43/(g2*g3^10*g4) - g1^2*g3^8*t^8.45 - g2^2*g3^8*t^8.45 - 4*g3^4*t^8.46 - (g1*g3^4*t^8.46)/g2 - (g2*g3^4*t^8.46)/g1 - t^8.55/(g1^2*g2^2*g3^18*g4^2) + t^8.56/(g1^3*g2^3*g3^22*g4^2) - (g1*g3^4*t^8.57)/g4 - (g2*g3^4*t^8.57)/g4 - t^8.58/(g1*g2^2*g3^4*g4) - t^8.58/(g1^2*g2*g3^4*g4) + t^8.68/g4^2 - t^8.69/(g1*g2*g3^4*g4^2) - (g3^2*t^4.23)/y - (g1*g3^10*g4*t^6.57)/y - (g2*g3^10*g4*t^6.57)/y - (g3^6*t^6.69)/y + (g1*g2*g3^16*g4^2*t^7.68)/y + t^7.77/(g3^2*y) + (g1*g3^12*g4*t^7.8)/y + (g2*g3^12*g4*t^7.8)/y + t^7.89/(g1*g3^6*g4*y) + t^7.89/(g2*g3^6*g4*y) + (g1^2*g3^8*g4^2*t^8.77)/y + (2*g1*g2*g3^8*g4^2*t^8.77)/y + (g2^2*g3^8*g4^2*t^8.77)/y + (g1*g3^4*g4*t^8.88)/y + (g2*g3^4*g4*t^8.88)/y + (g1^2*g2*g3^8*g4*t^8.88)/y + (g1*g2^2*g3^8*g4*t^8.88)/y + (g4*t^8.89)/(g1*y) + (g4*t^8.89)/(g2*y) - (g1^2*g3^18*g4^2*t^8.91)/y - (g1*g2*g3^18*g4^2*t^8.91)/y - (g2^2*g3^18*g4^2*t^8.91)/y + (g1*g2*g3^4*t^8.99)/y - g3^2*t^4.23*y - g1*g3^10*g4*t^6.57*y - g2*g3^10*g4*t^6.57*y - g3^6*t^6.69*y + g1*g2*g3^16*g4^2*t^7.68*y + (t^7.77*y)/g3^2 + g1*g3^12*g4*t^7.8*y + g2*g3^12*g4*t^7.8*y + (t^7.89*y)/(g1*g3^6*g4) + (t^7.89*y)/(g2*g3^6*g4) + g1^2*g3^8*g4^2*t^8.77*y + 2*g1*g2*g3^8*g4^2*t^8.77*y + g2^2*g3^8*g4^2*t^8.77*y + g1*g3^4*g4*t^8.88*y + g2*g3^4*g4*t^8.88*y + g1^2*g2*g3^8*g4*t^8.88*y + g1*g2^2*g3^8*g4*t^8.88*y + (g4*t^8.89*y)/g1 + (g4*t^8.89*y)/g2 - g1^2*g3^18*g4^2*t^8.91*y - g1*g2*g3^18*g4^2*t^8.91*y - g2^2*g3^18*g4^2*t^8.91*y + g1*g2*g3^4*t^8.99*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
137 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_1M_4$ 0.7406 0.8961 0.8265 [X:[], M:[0.8579, 0.7808, 0.7808, 1.1421], q:[0.5894, 0.5527], qb:[0.6298, 0.5894], phi:[0.4097]] 2*t^2.34 + t^2.46 + 2*t^3.43 + t^3.54 + t^3.55 + t^4.54 + 2*t^4.66 + 3*t^4.68 + 3*t^4.77 + t^4.78 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5.01 + 3*t^5.77 + 2*t^5.88 + t^5.99 - 6*t^6. - t^4.23/y - t^4.23*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55689 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1q_2q_3$ + $ M_2q_2\tilde{q}_1$ 0.8908 1.0945 0.8139 [X:[], M:[0.7257, 0.7257], q:[0.7289, 0.6495, 0.6248], qb:[0.6248, 0.6016, 0.6016], phi:[0.5422]] 2*t^2.18 + t^3.25 + t^3.61 + 4*t^3.68 + 3*t^3.75 + 2*t^3.99 + 2*t^4.06 + t^4.14 + 3*t^4.35 + 3*t^5.24 + 4*t^5.31 + 5*t^5.38 + 2*t^5.43 + 2*t^5.45 + t^5.52 + 2*t^5.79 + 6*t^5.86 - 9*t^6. - t^4.63/y - t^4.63*y detail