Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57651 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4955 1.727 0.8659 [X:[], M:[0.99, 0.6722], q:[0.5044, 0.4856], qb:[0.5056, 0.4844], phi:[0.3367]] [X:[], M:[[3, 0, 3], [-8, -1, 1]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ ${}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 0 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + t^4.03 + 3*t^4.04 + 3*t^4.93 + t^4.98 + 7*t^4.99 + 3*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + 3*t^5.88 + t^5.93 + 5*t^5.94 + t^5.95 + t^5.99 + 2*t^6.05 + 3*t^6.06 + t^6.44 + t^6.45 + t^6.5 + t^6.51 + t^6.83 + 4*t^6.89 + 2*t^6.94 + 6*t^6.95 + 4*t^7. + 10*t^7.01 + t^7.06 + 3*t^7.07 + t^7.39 + t^7.4 + 3*t^7.45 + t^7.46 + 3*t^7.51 + t^7.52 + t^7.57 + t^7.58 + 4*t^7.84 + t^7.89 + 10*t^7.9 + 5*t^7.95 + 11*t^7.96 + 2*t^7.97 + 3*t^8.01 + t^8.02 + 3*t^8.07 + 3*t^8.08 + t^8.34 + t^8.35 + 3*t^8.4 + 3*t^8.41 + 4*t^8.46 + 2*t^8.47 + t^8.52 - t^8.53 - t^8.58 - t^8.59 + t^8.73 + 3*t^8.79 + t^8.84 + 6*t^8.85 + t^8.86 + 3*t^8.9 + 9*t^8.91 + t^8.92 + 7*t^8.96 - 2*t^8.97 + t^8.98 - t^4.01/y - t^5.02/y - (2*t^6.03)/y - t^6.92/y - (3*t^6.98)/y - (2*t^7.04)/y + t^7.93/y + t^7.98/y + (4*t^7.99)/y - t^8.04/y - t^8.05/y + (3*t^8.88)/y + (3*t^8.94)/y - t^4.01*y - t^5.02*y - 2*t^6.03*y - t^6.92*y - 3*t^6.98*y - 2*t^7.04*y + t^7.93*y + t^7.98*y + 4*t^7.99*y - t^8.04*y - t^8.05*y + 3*t^8.88*y + 3*t^8.94*y t^2.02/(g1^2*g3^2) + (g3*t^2.02)/(g1^8*g2) + g1^9*g3^9*t^2.91 + g1^9*g2*t^2.97 + g1^3*g3^3*t^2.97 + (g3^6*t^2.97)/(g1^3*g2) + t^3.03/(g1^3*g3^3) + g1^8*g3^8*t^3.92 + (g3^5*t^3.98)/(g1^4*g2) + (g3^2*t^4.03)/(g1^16*g2^2) + (2*t^4.04)/(g1^4*g3^4) + t^4.04/(g1^10*g2*g3) + 2*g1^7*g3^7*t^4.93 + (g1*g3^10*t^4.93)/g2 + (g3^7*t^4.98)/(g1^11*g2^2) + (2*g1^7*g2*t^4.99)/g3^2 + 2*g1*g3*t^4.99 + (3*g3^4*t^4.99)/(g1^5*g2) + (2*t^5.05)/(g1^5*g3^5) + t^5.05/(g1^11*g2*g3^2) + (g2*g3^17*t^5.43)/g1 + (g1^14*t^5.44)/(g2*g3^4) + (g1^2*t^5.49)/(g2^2*g3^7) + (g2^2*g3^8*t^5.5)/g1 + g1^18*g3^18*t^5.82 + g1^18*g2*g3^9*t^5.88 + g1^12*g3^12*t^5.88 + (g1^6*g3^15*t^5.88)/g2 + (g3^12*t^5.93)/(g1^6*g2^2) + 4*g1^6*g3^6*t^5.94 + (g3^9*t^5.94)/g2 + g1^18*g2^2*t^5.95 + (g3^6*t^5.99)/(g1^12*g2^2) - 3*t^6. + (g1^6*g2*t^6.)/g3^3 + (2*g3^3*t^6.)/(g1^6*g2) + t^6.05/(g1^18*g2^2) + (g3^3*t^6.05)/(g1^24*g2^3) - (g2*t^6.06)/g3^9 + (3*t^6.06)/(g1^6*g3^6) + t^6.06/(g1^12*g2*g3^3) + (g2*g3^16*t^6.44)/g1^2 + (g1^13*t^6.45)/(g2*g3^5) + (g1*t^6.5)/(g2^2*g3^8) + (g2^2*g3^7*t^6.51)/g1^2 + g1^17*g3^17*t^6.83 + g1^17*g2*g3^8*t^6.89 + g1^11*g3^11*t^6.89 + (2*g1^5*g3^14*t^6.89)/g2 + (2*g3^11*t^6.94)/(g1^7*g2^2) - g1^11*g2*g3^2*t^6.95 + 5*g1^5*g3^5*t^6.95 + (2*g3^8*t^6.95)/(g1*g2) + (3*g3^5*t^7.)/(g1^13*g2^2) + (g3^8*t^7.)/(g1^19*g2^3) + (3*g1^5*g2*t^7.01)/g3^4 + t^7.01/(g1*g3) + (6*g3^2*t^7.01)/(g1^7*g2) + t^7.06/(g1^19*g2^2*g3) - (g2*t^7.07)/(g1*g3^10) + (3*t^7.07)/(g1^7*g3^7) + t^7.07/(g1^13*g2*g3^4) + (g3^24*t^7.39)/g1^3 + (g1^24*t^7.4)/g3^3 + (2*g2*g3^15*t^7.45)/g1^3 + (g3^18*t^7.45)/g1^9 + (2*g1^12*t^7.46)/(g2*g3^6) - g1^3*g2^2*g3^12*t^7.46 + (2*t^7.51)/(g2^2*g3^9) + t^7.51/(g1^6*g2^3*g3^6) - (g1^6*t^7.52)/(g2*g3^12) + (2*g2^2*g3^6*t^7.52)/g1^3 + t^7.57/(g1^12*g2^3*g3^12) + (g2^3*t^7.58)/(g1^3*g3^3) + 3*g1^16*g3^16*t^7.84 + (g1^10*g3^19*t^7.84)/g2 + (g3^16*t^7.89)/(g1^2*g2^2) + 3*g1^16*g2*g3^7*t^7.9 + 2*g1^10*g3^10*t^7.9 + (5*g1^4*g3^13*t^7.9)/g2 + (4*g3^10*t^7.95)/(g1^8*g2^2) + (g3^13*t^7.95)/(g1^14*g2^3) + 8*g1^4*g3^4*t^7.96 + (3*g3^7*t^7.96)/(g1^2*g2) + (2*g1^16*g2^2*t^7.97)/g3^2 + (2*g3^4*t^8.01)/(g1^14*g2^2) + (g3^7*t^8.01)/(g1^20*g2^3) + (3*g1^4*g2*t^8.02)/g3^5 - (4*t^8.02)/(g1^2*g3^2) + (2*g3*t^8.02)/(g1^8*g2) + t^8.07/(g1^20*g2^2*g3^2) + (g3*t^8.07)/(g1^26*g2^3) + (g3^4*t^8.07)/(g1^32*g2^4) - (2*g2*t^8.08)/(g1^2*g3^11) + (4*t^8.08)/(g1^8*g3^8) + t^8.08/(g1^14*g2*g3^5) + g1^8*g2*g3^26*t^8.34 + (g1^23*g3^5*t^8.35)/g2 + (2*g1^11*g3^2*t^8.4)/g2^2 + (g3^23*t^8.4)/g1^4 + (g1^23*t^8.41)/g3^4 + 2*g1^8*g2^2*g3^17*t^8.41 + t^8.46/(g1*g2^3*g3) + (3*g2*g3^14*t^8.46)/g1^4 - (g1^17*t^8.47)/g3^10 + (3*g1^11*t^8.47)/(g2*g3^7) + g1^8*g2^3*g3^8*t^8.47 - g1^2*g2^2*g3^11*t^8.47 + (2*t^8.52)/(g1*g2^2*g3^10) - (g2*g3^8*t^8.52)/g1^10 - (2*g1^5*t^8.53)/(g2*g3^13) - g1^2*g2^3*g3^2*t^8.53 + (2*g2^2*g3^5*t^8.53)/g1^4 - t^8.58/(g1^7*g2^2*g3^16) - (g2^2*t^8.59)/(g1^10*g3) + g1^27*g3^27*t^8.73 + g1^27*g2*g3^18*t^8.79 + g1^21*g3^21*t^8.79 + (g1^15*g3^24*t^8.79)/g2 + (g1^3*g3^21*t^8.84)/g2^2 + 5*g1^15*g3^15*t^8.85 + (g1^9*g3^18*t^8.85)/g2 + g1^27*g2^2*g3^9*t^8.86 + (2*g3^15*t^8.9)/(g1^3*g2^2) + (g3^18*t^8.9)/(g1^9*g2^3) + 4*g1^15*g2*g3^6*t^8.91 - 2*g1^9*g3^9*t^8.91 + (7*g1^3*g3^12*t^8.91)/g2 + g1^27*g2^3*t^8.92 + (5*g3^9*t^8.96)/(g1^9*g2^2) + (2*g3^12*t^8.96)/(g1^15*g2^3) - 7*g1^9*g2*t^8.97 + 6*g1^3*g3^3*t^8.97 - (g3^6*t^8.97)/(g1^3*g2) + (g1^15*g2^2*t^8.98)/g3^3 - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - t^6.03/(g1^9*g2*y) - t^6.03/(g1^3*g3^3*y) - (g1^8*g3^8*t^6.92)/y - (g1^8*g2*t^6.98)/(g3*y) - (g1^2*g3^2*t^6.98)/y - (g3^5*t^6.98)/(g1^4*g2*y) - (2*t^7.04)/(g1^4*g3^4*y) + (g1*g3^10*t^7.93)/(g2*y) + (g3^7*t^7.98)/(g1^11*g2^2*y) + (g1^7*g2*t^7.99)/(g3^2*y) + (2*g1*g3*t^7.99)/y + (g3^4*t^7.99)/(g1^5*g2*y) - (g3*t^8.04)/(g1^17*g2^2*y) - t^8.05/(g1^5*g3^5*y) + (g1^18*g2*g3^9*t^8.88)/y + (g1^12*g3^12*t^8.88)/y + (g1^6*g3^15*t^8.88)/(g2*y) + (g1^12*g2*g3^3*t^8.94)/y + (g1^6*g3^6*t^8.94)/y + (g3^9*t^8.94)/(g2*y) - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (t^6.03*y)/(g1^9*g2) - (t^6.03*y)/(g1^3*g3^3) - g1^8*g3^8*t^6.92*y - (g1^8*g2*t^6.98*y)/g3 - g1^2*g3^2*t^6.98*y - (g3^5*t^6.98*y)/(g1^4*g2) - (2*t^7.04*y)/(g1^4*g3^4) + (g1*g3^10*t^7.93*y)/g2 + (g3^7*t^7.98*y)/(g1^11*g2^2) + (g1^7*g2*t^7.99*y)/g3^2 + 2*g1*g3*t^7.99*y + (g3^4*t^7.99*y)/(g1^5*g2) - (g3*t^8.04*y)/(g1^17*g2^2) - (t^8.05*y)/(g1^5*g3^5) + g1^18*g2*g3^9*t^8.88*y + g1^12*g3^12*t^8.88*y + (g1^6*g3^15*t^8.88*y)/g2 + g1^12*g2*g3^3*t^8.94*y + g1^6*g3^6*t^8.94*y + (g3^9*t^8.94*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58603 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4951 1.7248 0.8668 [X:[], M:[0.995, 0.6801], q:[0.5076, 0.4874], qb:[0.4974, 0.4974], phi:[0.335]] t^2.01 + t^2.04 + 2*t^2.95 + t^2.98 + 2*t^3.02 + t^3.96 + 3*t^4.02 + t^4.05 + t^4.08 + 4*t^4.96 + 3*t^4.99 + 5*t^5.03 + 2*t^5.06 + t^5.45 + 2*t^5.48 + t^5.51 + 3*t^5.91 + t^5.94 + 6*t^5.97 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail
58601 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.3966 1.5747 0.8869 [X:[1.3833], M:[1.075, 0.775], q:[0.5288, 0.5205], qb:[0.3962, 0.7045], phi:[0.3083]] t^2.33 + t^2.75 + t^2.78 + t^3.22 + t^3.67 + 2*t^3.7 + t^4.15 + 2*t^4.6 + 2*t^4.63 + t^4.65 + t^5.1 + t^5.42 + t^5.5 + 2*t^5.52 + 3*t^5.55 + t^5.63 + t^5.66 - 3*t^6. - t^3.93/y - t^4.85/y - t^3.93*y - t^4.85*y detail
58907 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5163 1.7682 0.8576 [X:[], M:[0.9902, 0.6732, 0.6732], q:[0.5049, 0.4853], qb:[0.5049, 0.4853], phi:[0.3366]] 3*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + 7*t^4.04 + 4*t^4.93 + 11*t^4.99 + 4*t^5.05 + 2*t^5.44 + 2*t^5.5 + t^5.82 + 3*t^5.88 + 8*t^5.94 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail
60027 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4963 1.7259 0.867 [X:[], M:[0.9974, 0.6984, 0.9726], q:[0.5164, 0.4812], qb:[0.4862, 0.5111], phi:[0.3342]] t^2.01 + t^2.1 + t^2.9 + t^2.92 + t^2.98 + t^2.99 + t^3.01 + t^3.98 + 2*t^4.01 + t^4.08 + t^4.1 + t^4.19 + 2*t^4.91 + t^4.92 + 2*t^4.98 + 2*t^5. + 3*t^5.01 + t^5.07 + 2*t^5.09 + t^5.1 + t^5.44 + t^5.45 + t^5.53 + t^5.54 + t^5.8 + t^5.82 + t^5.84 + t^5.88 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.97 + 3*t^5.98 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail
59053 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4615 1.6645 0.878 [X:[1.3425], M:[1.0138, 0.6834], q:[0.4648, 0.4664], qb:[0.5215, 0.5749], phi:[0.3287]] t^2.05 + 2*t^2.96 + t^3.04 + 2*t^3.12 + t^3.94 + t^4.03 + t^4.1 + 2*t^4.11 + t^4.93 + t^4.94 + 2*t^5.01 + 2*t^5.09 + t^5.1 + 3*t^5.17 + t^5.18 + 2*t^5.92 + t^5.93 - 2*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail
59106 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ 1.4953 1.7258 0.8665 [X:[], M:[0.9921, 0.6798], q:[0.5079, 0.4843], qb:[0.4999, 0.4921], phi:[0.336]] t^2.02 + t^2.04 + t^2.93 + t^2.95 + t^2.98 + t^3. + t^3.02 + t^3.94 + t^4.01 + 2*t^4.03 + t^4.06 + t^4.08 + 2*t^4.94 + 3*t^4.97 + 2*t^4.99 + 3*t^5.02 + 3*t^5.04 + t^5.06 + t^5.44 + t^5.46 + t^5.48 + t^5.51 + t^5.86 + t^5.88 + 2*t^5.91 + t^5.93 + 4*t^5.95 + 2*t^5.98 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47935 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ 1.4747 1.6858 0.8748 [M:[0.9898], q:[0.5051, 0.4847], qb:[0.5051, 0.4847], phi:[0.3367]] t^2.02 + t^2.908 + 3*t^2.969 + t^3.031 + t^3.919 + 2*t^3.98 + 2*t^4.041 + 2*t^4.929 + 5*t^4.99 + 2*t^5.051 + 2*t^5.434 + 2*t^5.495 + t^5.817 + 3*t^5.878 + 6*t^5.939 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail