Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59106 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | 1.4953 | 1.7258 | 0.8665 | [X:[], M:[0.9921, 0.6798], q:[0.5079, 0.4843], qb:[0.4999, 0.4921], phi:[0.336]] | [X:[], M:[[-3, 3], [5, -5]], q:[[0, -3], [-9, 6]], qb:[[3, 0], [0, 3]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | ${}$ | -2 | t^2.02 + t^2.04 + t^2.93 + t^2.95 + t^2.98 + t^3. + t^3.02 + t^3.94 + t^4.01 + 2*t^4.03 + t^4.06 + t^4.08 + 2*t^4.94 + 3*t^4.97 + 2*t^4.99 + 3*t^5.02 + 3*t^5.04 + t^5.06 + t^5.44 + t^5.46 + t^5.48 + t^5.51 + t^5.86 + t^5.88 + 2*t^5.91 + t^5.93 + 4*t^5.95 + 2*t^5.98 - 2*t^6. + t^6.02 + 4*t^6.05 + t^6.07 + t^6.09 + t^6.12 + t^6.45 + t^6.47 + t^6.49 + t^6.52 + t^6.87 + t^6.89 + t^6.91 + t^6.94 + 5*t^6.96 + 5*t^6.98 + 3*t^7.01 + 5*t^7.03 + 6*t^7.06 + 2*t^7.08 + t^7.1 + t^7.38 + 2*t^7.45 + 2*t^7.48 + 2*t^7.5 + 3*t^7.52 + t^7.55 + t^7.59 + 3*t^7.87 + 4*t^7.9 + 4*t^7.92 + 5*t^7.94 + 9*t^7.97 + 6*t^7.99 + t^8.04 + 6*t^8.06 + 2*t^8.09 + t^8.11 + t^8.13 + t^8.16 + t^8.37 + 2*t^8.39 + 2*t^8.41 + 2*t^8.44 + 3*t^8.46 + 2*t^8.48 + t^8.51 + t^8.53 - t^8.55 - t^8.58 + t^8.79 + t^8.81 + 2*t^8.83 + 2*t^8.86 + 5*t^8.88 + 5*t^8.91 + 7*t^8.98 - t^4.01/y - t^5.02/y - t^6.02/y - t^6.05/y - t^6.94/y - t^6.96/y - t^6.98/y - t^7.01/y - (2*t^7.03)/y + (2*t^7.97)/y + (2*t^7.99)/y + t^8.02/y - t^8.09/y + t^8.88/y + t^8.91/y + (2*t^8.93)/y + t^8.95/y + t^8.98/y - t^4.01*y - t^5.02*y - t^6.02*y - t^6.05*y - t^6.94*y - t^6.96*y - t^6.98*y - t^7.01*y - 2*t^7.03*y + 2*t^7.97*y + 2*t^7.99*y + t^8.02*y - t^8.09*y + t^8.88*y + t^8.91*y + 2*t^8.93*y + t^8.95*y + t^8.98*y | (g1^2*t^2.02)/g2^2 + (g1^5*t^2.04)/g2^5 + (g2^9*t^2.93)/g1^9 + (g2^6*t^2.95)/g1^6 + (g2^3*t^2.98)/g1^3 + t^3. + (g1^3*t^3.02)/g2^3 + (g2^8*t^3.94)/g1^8 + (g1*t^4.01)/g2 + (2*g1^4*t^4.03)/g2^4 + (g1^7*t^4.06)/g2^7 + (g1^10*t^4.08)/g2^10 + (2*g2^7*t^4.94)/g1^7 + (3*g2^4*t^4.97)/g1^4 + (2*g2*t^4.99)/g1 + (3*g1^2*t^5.02)/g2^2 + (3*g1^5*t^5.04)/g2^5 + (g1^8*t^5.06)/g2^8 + (g2^8*t^5.44)/g1^17 + g1^4*g2^5*t^5.46 + g1^7*g2^2*t^5.48 + t^5.51/(g1^8*g2) + (g2^18*t^5.86)/g1^18 + (g2^15*t^5.88)/g1^15 + (2*g2^12*t^5.91)/g1^12 + (g2^9*t^5.93)/g1^9 + (4*g2^6*t^5.95)/g1^6 + (2*g2^3*t^5.98)/g1^3 - 2*t^6. + (g1^3*t^6.02)/g2^3 + (4*g1^6*t^6.05)/g2^6 + (g1^9*t^6.07)/g2^9 + (g1^12*t^6.09)/g2^12 + (g1^15*t^6.12)/g2^15 + (g2^7*t^6.45)/g1^16 + g1^5*g2^4*t^6.47 + g1^8*g2*t^6.49 + t^6.52/(g1^7*g2^2) + (g2^17*t^6.87)/g1^17 + (g2^14*t^6.89)/g1^14 + (g2^11*t^6.91)/g1^11 + (g2^8*t^6.94)/g1^8 + (5*g2^5*t^6.96)/g1^5 + (5*g2^2*t^6.98)/g1^2 + (3*g1*t^7.01)/g2 + (5*g1^4*t^7.03)/g2^4 + (6*g1^7*t^7.06)/g2^7 + (2*g1^10*t^7.08)/g2^10 + (g1^13*t^7.1)/g2^13 + (g2^15*t^7.38)/g1^24 + (2*g2^6*t^7.45)/g1^15 + 2*g1^6*g2^3*t^7.48 - t^7.5/g1^9 + 3*g1^9*t^7.5 + (2*t^7.52)/(g1^6*g2^3) + (g1^12*t^7.52)/g2^3 + t^7.55/(g1^3*g2^6) + (g1^3*t^7.59)/g2^12 + (3*g2^16*t^7.87)/g1^16 + (4*g2^13*t^7.9)/g1^13 + (4*g2^10*t^7.92)/g1^10 + (5*g2^7*t^7.94)/g1^7 + (9*g2^4*t^7.97)/g1^4 + (6*g2*t^7.99)/g1 + (g1^5*t^8.04)/g2^5 + (6*g1^8*t^8.06)/g2^8 + (2*g1^11*t^8.09)/g2^11 + (g1^14*t^8.11)/g2^14 + (g1^17*t^8.13)/g2^17 + (g1^20*t^8.16)/g2^20 + (g2^17*t^8.37)/g1^26 + (g2^14*t^8.39)/g1^23 + (g2^14*t^8.39)/g1^5 + (2*g2^11*t^8.41)/g1^2 + (g2^8*t^8.44)/g1^17 + g1*g2^8*t^8.44 + (3*g2^5*t^8.46)/g1^14 + 2*g1^7*g2^2*t^8.48 - t^8.51/(g1^8*g2) + (2*g1^10*t^8.51)/g2 + (2*t^8.53)/(g1^5*g2^4) - (g1^13*t^8.53)/g2^4 - (g1^16*t^8.55)/g2^7 - (g1*t^8.58)/g2^10 + (g2^27*t^8.79)/g1^27 + (g2^24*t^8.81)/g1^24 + (2*g2^21*t^8.83)/g1^21 + (2*g2^18*t^8.86)/g1^18 + (5*g2^15*t^8.88)/g1^15 + (5*g2^12*t^8.91)/g1^12 + (7*g2^3*t^8.98)/g1^3 - (g1*t^4.01)/(g2*y) - (g1^2*t^5.02)/(g2^2*y) - (g1^3*t^6.02)/(g2^3*y) - (g1^6*t^6.05)/(g2^6*y) - (g2^8*t^6.94)/(g1^8*y) - (g2^5*t^6.96)/(g1^5*y) - (g2^2*t^6.98)/(g1^2*y) - (g1*t^7.01)/(g2*y) - (2*g1^4*t^7.03)/(g2^4*y) + (2*g2^4*t^7.97)/(g1^4*y) + (2*g2*t^7.99)/(g1*y) + (g1^2*t^8.02)/(g2^2*y) - (g1^11*t^8.09)/(g2^11*y) + (g2^15*t^8.88)/(g1^15*y) + (g2^12*t^8.91)/(g1^12*y) + (2*g2^9*t^8.93)/(g1^9*y) + (g2^6*t^8.95)/(g1^6*y) + (g2^3*t^8.98)/(g1^3*y) - (g1*t^4.01*y)/g2 - (g1^2*t^5.02*y)/g2^2 - (g1^3*t^6.02*y)/g2^3 - (g1^6*t^6.05*y)/g2^6 - (g2^8*t^6.94*y)/g1^8 - (g2^5*t^6.96*y)/g1^5 - (g2^2*t^6.98*y)/g1^2 - (g1*t^7.01*y)/g2 - (2*g1^4*t^7.03*y)/g2^4 + (2*g2^4*t^7.97*y)/g1^4 + (2*g2*t^7.99*y)/g1 + (g1^2*t^8.02*y)/g2^2 - (g1^11*t^8.09*y)/g2^11 + (g2^15*t^8.88*y)/g1^15 + (g2^12*t^8.91*y)/g1^12 + (2*g2^9*t^8.93*y)/g1^9 + (g2^6*t^8.95*y)/g1^6 + (g2^3*t^8.98*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57651 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4955 | 1.727 | 0.8659 | [X:[], M:[0.99, 0.6722], q:[0.5044, 0.4856], qb:[0.5056, 0.4844], phi:[0.3367]] | 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + t^4.03 + 3*t^4.04 + 3*t^4.93 + t^4.98 + 7*t^4.99 + 3*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + 3*t^5.88 + t^5.93 + 5*t^5.94 + t^5.95 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |