Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58907 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5163 | 1.7682 | 0.8576 | [X:[], M:[0.9902, 0.6732, 0.6732], q:[0.5049, 0.4853], qb:[0.5049, 0.4853], phi:[0.3366]] | [X:[], M:[[3, 0, 3], [-8, -1, 1], [4, 1, -5]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | -1 | 3*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + 7*t^4.04 + 4*t^4.93 + 11*t^4.99 + 4*t^5.05 + 2*t^5.44 + 2*t^5.5 + t^5.82 + 3*t^5.88 + 8*t^5.94 - t^6. + 12*t^6.06 + 2*t^6.45 + 2*t^6.5 + t^6.83 + 3*t^6.89 + 9*t^6.95 + 24*t^7.01 + 8*t^7.07 + 2*t^7.4 + 6*t^7.46 + 6*t^7.51 + 2*t^7.57 + 5*t^7.84 + 13*t^7.9 + 25*t^7.96 - t^8.02 + 18*t^8.08 + 2*t^8.35 + 6*t^8.41 + 8*t^8.47 + 2*t^8.52 - 2*t^8.58 + t^8.73 + 3*t^8.79 + 9*t^8.85 + 13*t^8.91 + 7*t^8.97 - t^4.01/y - t^5.02/y - (3*t^6.03)/y - t^6.92/y - (3*t^6.98)/y - t^7.04/y + (2*t^7.93)/y + (9*t^7.99)/y - (4*t^8.05)/y + (3*t^8.88)/y + (3*t^8.94)/y - t^4.01*y - t^5.02*y - 3*t^6.03*y - t^6.92*y - 3*t^6.98*y - t^7.04*y + 2*t^7.93*y + 9*t^7.99*y - 4*t^8.05*y + 3*t^8.88*y + 3*t^8.94*y | (g1^4*g2*t^2.02)/g3^5 + t^2.02/(g1^2*g3^2) + (g3*t^2.02)/(g1^8*g2) + g1^9*g3^9*t^2.91 + g1^9*g2*t^2.97 + g1^3*g3^3*t^2.97 + (g3^6*t^2.97)/(g1^3*g2) + t^3.03/(g1^3*g3^3) + g1^8*g3^8*t^3.92 + (g1^8*g2^2*t^4.04)/g3^10 + (g1^2*g2*t^4.04)/g3^7 + (3*t^4.04)/(g1^4*g3^4) + t^4.04/(g1^10*g2*g3) + (g3^2*t^4.04)/(g1^16*g2^2) + g1^13*g2*g3^4*t^4.93 + 2*g1^7*g3^7*t^4.93 + (g1*g3^10*t^4.93)/g2 + (g1^13*g2^2*t^4.99)/g3^5 + (3*g1^7*g2*t^4.99)/g3^2 + 3*g1*g3*t^4.99 + (3*g3^4*t^4.99)/(g1^5*g2) + (g3^7*t^4.99)/(g1^11*g2^2) + (g1*g2*t^5.05)/g3^8 + (2*t^5.05)/(g1^5*g3^5) + t^5.05/(g1^11*g2*g3^2) + (g1^14*t^5.44)/(g2*g3^4) + (g2*g3^17*t^5.44)/g1 + (g1^2*t^5.5)/(g2^2*g3^7) + (g2^2*g3^8*t^5.5)/g1 + g1^18*g3^18*t^5.82 + g1^18*g2*g3^9*t^5.88 + g1^12*g3^12*t^5.88 + (g1^6*g3^15*t^5.88)/g2 + g1^18*g2^2*t^5.94 + g1^12*g2*g3^3*t^5.94 + 4*g1^6*g3^6*t^5.94 + (g3^9*t^5.94)/g2 + (g3^12*t^5.94)/(g1^6*g2^2) - 3*t^6. + (g1^6*g2*t^6.)/g3^3 + (g3^3*t^6.)/(g1^6*g2) + t^6.06/(g1^18*g2^2) + (g1^12*g2^3*t^6.06)/g3^15 + (g1^6*g2^2*t^6.06)/g3^12 + (2*g2*t^6.06)/g3^9 + (4*t^6.06)/(g1^6*g3^6) + (2*t^6.06)/(g1^12*g2*g3^3) + (g3^3*t^6.06)/(g1^24*g2^3) + (g1^13*t^6.45)/(g2*g3^5) + (g2*g3^16*t^6.45)/g1^2 + (g1*t^6.5)/(g2^2*g3^8) + (g2^2*g3^7*t^6.5)/g1^2 + g1^17*g3^17*t^6.83 + g1^17*g2*g3^8*t^6.89 + g1^11*g3^11*t^6.89 + (g1^5*g3^14*t^6.89)/g2 + (g1^17*g2^2*t^6.95)/g3 + g1^11*g2*g3^2*t^6.95 + 5*g1^5*g3^5*t^6.95 + (g3^8*t^6.95)/(g1*g2) + (g3^11*t^6.95)/(g1^7*g2^2) + (g1^17*g2^3*t^7.01)/g3^10 + (3*g1^11*g2^2*t^7.01)/g3^7 + (6*g1^5*g2*t^7.01)/g3^4 + (4*t^7.01)/(g1*g3) + (6*g3^2*t^7.01)/(g1^7*g2) + (3*g3^5*t^7.01)/(g1^13*g2^2) + (g3^8*t^7.01)/(g1^19*g2^3) + (g1^5*g2^2*t^7.07)/g3^13 + (g2*t^7.07)/(g1*g3^10) + (4*t^7.07)/(g1^7*g3^7) + t^7.07/(g1^13*g2*g3^4) + t^7.07/(g1^19*g2^2*g3) + (g1^24*t^7.4)/g3^3 + (g3^24*t^7.4)/g1^3 + (g1^18*t^7.46)/g3^9 + (2*g1^12*t^7.46)/(g2*g3^6) + (2*g2*g3^15*t^7.46)/g1^3 + (g3^18*t^7.46)/g1^9 + (2*t^7.51)/(g2^2*g3^9) + t^7.51/(g1^6*g2^3*g3^6) + g1^3*g2^3*g3^3*t^7.51 + (2*g2^2*g3^6*t^7.51)/g1^3 + t^7.57/(g1^12*g2^3*g3^12) + (g2^3*t^7.57)/(g1^3*g3^3) + g1^22*g2*g3^13*t^7.84 + 3*g1^16*g3^16*t^7.84 + (g1^10*g3^19*t^7.84)/g2 + g1^22*g2^2*g3^4*t^7.9 + 4*g1^16*g2*g3^7*t^7.9 + 3*g1^10*g3^10*t^7.9 + (4*g1^4*g3^13*t^7.9)/g2 + (g3^16*t^7.9)/(g1^2*g2^2) + (g1^22*g2^3*t^7.96)/g3^5 + (3*g1^16*g2^2*t^7.96)/g3^2 + 4*g1^10*g2*g3*t^7.96 + 9*g1^4*g3^4*t^7.96 + (4*g3^7*t^7.96)/(g1^2*g2) + (3*g3^10*t^7.96)/(g1^8*g2^2) + (g3^13*t^7.96)/(g1^14*g2^3) + (g1^10*g2^2*t^8.02)/g3^8 - (3*t^8.02)/(g1^2*g3^2) + (g3^4*t^8.02)/(g1^14*g2^2) + (g1^16*g2^4*t^8.08)/g3^20 + (g1^10*g2^3*t^8.08)/g3^17 + (2*g1^4*g2^2*t^8.08)/g3^14 + (2*g2*t^8.08)/(g1^2*g3^11) + (6*t^8.08)/(g1^8*g3^8) + (2*t^8.08)/(g1^14*g2*g3^5) + (2*t^8.08)/(g1^20*g2^2*g3^2) + (g3*t^8.08)/(g1^26*g2^3) + (g3^4*t^8.08)/(g1^32*g2^4) + (g1^23*g3^5*t^8.35)/g2 + g1^8*g2*g3^26*t^8.35 + (g1^23*t^8.41)/g3^4 + (2*g1^11*g3^2*t^8.41)/g2^2 + 2*g1^8*g2^2*g3^17*t^8.41 + (g3^23*t^8.41)/g1^4 + (3*g1^11*t^8.47)/(g2*g3^7) + t^8.47/(g1*g2^3*g3) + g1^8*g2^3*g3^8*t^8.47 + (3*g2*g3^14*t^8.47)/g1^4 - (g1^5*t^8.52)/(g2*g3^13) + (2*t^8.52)/(g1*g2^2*g3^10) + (2*g2^2*g3^5*t^8.52)/g1^4 - (g2*g3^8*t^8.52)/g1^10 - t^8.58/(g1^7*g2^2*g3^16) - (g2^2*t^8.58)/(g1^10*g3) + g1^27*g3^27*t^8.73 + g1^27*g2*g3^18*t^8.79 + g1^21*g3^21*t^8.79 + (g1^15*g3^24*t^8.79)/g2 + g1^27*g2^2*g3^9*t^8.85 + g1^21*g2*g3^12*t^8.85 + 5*g1^15*g3^15*t^8.85 + (g1^9*g3^18*t^8.85)/g2 + (g1^3*g3^21*t^8.85)/g2^2 + g1^27*g2^3*t^8.91 + g1^21*g2^2*g3^3*t^8.91 + 5*g1^15*g2*g3^6*t^8.91 - g1^9*g3^9*t^8.91 + (5*g1^3*g3^12*t^8.91)/g2 + (g3^15*t^8.91)/(g1^3*g2^2) + (g3^18*t^8.91)/(g1^9*g2^3) - 2*g1^9*g2*t^8.97 + (g1^21*g2^3*t^8.97)/g3^6 + (2*g1^15*g2^2*t^8.97)/g3^3 + 5*g1^3*g3^3*t^8.97 - (2*g3^6*t^8.97)/(g1^3*g2) + (2*g3^9*t^8.97)/(g1^9*g2^2) + (g3^12*t^8.97)/(g1^15*g2^3) - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - t^6.03/(g1^9*g2*y) - (g1^3*g2*t^6.03)/(g3^6*y) - t^6.03/(g1^3*g3^3*y) - (g1^8*g3^8*t^6.92)/y - (g1^8*g2*t^6.98)/(g3*y) - (g1^2*g3^2*t^6.98)/y - (g3^5*t^6.98)/(g1^4*g2*y) - t^7.04/(g1^4*g3^4*y) + (g1^13*g2*g3^4*t^7.93)/y + (g1*g3^10*t^7.93)/(g2*y) + (g1^13*g2^2*t^7.99)/(g3^5*y) + (2*g1^7*g2*t^7.99)/(g3^2*y) + (3*g1*g3*t^7.99)/y + (2*g3^4*t^7.99)/(g1^5*g2*y) + (g3^7*t^7.99)/(g1^11*g2^2*y) - (g1^7*g2^2*t^8.05)/(g3^11*y) - (2*t^8.05)/(g1^5*g3^5*y) - (g3*t^8.05)/(g1^17*g2^2*y) + (g1^18*g2*g3^9*t^8.88)/y + (g1^12*g3^12*t^8.88)/y + (g1^6*g3^15*t^8.88)/(g2*y) + (g1^12*g2*g3^3*t^8.94)/y + (g1^6*g3^6*t^8.94)/y + (g3^9*t^8.94)/(g2*y) - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (t^6.03*y)/(g1^9*g2) - (g1^3*g2*t^6.03*y)/g3^6 - (t^6.03*y)/(g1^3*g3^3) - g1^8*g3^8*t^6.92*y - (g1^8*g2*t^6.98*y)/g3 - g1^2*g3^2*t^6.98*y - (g3^5*t^6.98*y)/(g1^4*g2) - (t^7.04*y)/(g1^4*g3^4) + g1^13*g2*g3^4*t^7.93*y + (g1*g3^10*t^7.93*y)/g2 + (g1^13*g2^2*t^7.99*y)/g3^5 + (2*g1^7*g2*t^7.99*y)/g3^2 + 3*g1*g3*t^7.99*y + (2*g3^4*t^7.99*y)/(g1^5*g2) + (g3^7*t^7.99*y)/(g1^11*g2^2) - (g1^7*g2^2*t^8.05*y)/g3^11 - (2*t^8.05*y)/(g1^5*g3^5) - (g3*t^8.05*y)/(g1^17*g2^2) + g1^18*g2*g3^9*t^8.88*y + g1^12*g3^12*t^8.88*y + (g1^6*g3^15*t^8.88*y)/g2 + g1^12*g2*g3^3*t^8.94*y + g1^6*g3^6*t^8.94*y + (g3^9*t^8.94*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57651 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4955 | 1.727 | 0.8659 | [X:[], M:[0.99, 0.6722], q:[0.5044, 0.4856], qb:[0.5056, 0.4844], phi:[0.3367]] | 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + t^4.03 + 3*t^4.04 + 3*t^4.93 + t^4.98 + 7*t^4.99 + 3*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + 3*t^5.88 + t^5.93 + 5*t^5.94 + t^5.95 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |