Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58603 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4951 1.7248 0.8668 [X:[], M:[0.995, 0.6801], q:[0.5076, 0.4874], qb:[0.4974, 0.4974], phi:[0.335]] [X:[], M:[[3, 3], [-8, -8]], q:[[-3, -12], [9, 0]], qb:[[0, 9], [0, 9]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.01 + t^2.04 + 2*t^2.95 + t^2.98 + 2*t^3.02 + t^3.96 + 3*t^4.02 + t^4.05 + t^4.08 + 4*t^4.96 + 3*t^4.99 + 5*t^5.03 + 2*t^5.06 + t^5.45 + 2*t^5.48 + t^5.51 + 3*t^5.91 + t^5.94 + 6*t^5.97 - 3*t^6. + 6*t^6.03 + 2*t^6.06 + t^6.09 + t^6.12 + t^6.46 + 2*t^6.49 + t^6.52 + 2*t^6.91 + 10*t^6.97 + 2*t^7.01 + 11*t^7.04 + 4*t^7.07 + 2*t^7.1 + t^7.4 + t^7.46 + 5*t^7.49 + 3*t^7.52 + t^7.55 + t^7.58 + 8*t^7.92 + 3*t^7.95 + 16*t^7.98 - 2*t^8.01 + 10*t^8.04 + 4*t^8.07 + 2*t^8.1 + t^8.13 + t^8.16 + 2*t^8.41 + 3*t^8.44 + 3*t^8.47 + 4*t^8.5 + t^8.53 - t^8.56 + 4*t^8.86 + t^8.89 + 11*t^8.92 - 9*t^8.95 + 19*t^8.98 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.05/y - (2*t^6.96)/y - t^6.99/y - (3*t^7.02)/y + t^7.96/y + (3*t^7.99)/y + t^8.06/y - t^8.09/y + t^8.91/y + (2*t^8.94)/y + (2*t^8.97)/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.05*y - 2*t^6.96*y - t^6.99*y - 3*t^7.02*y + t^7.96*y + 3*t^7.99*y + t^8.06*y - t^8.09*y + t^8.91*y + 2*t^8.94*y + 2*t^8.97*y t^2.01/(g1^2*g2^2) + t^2.04/(g1^8*g2^8) + 2*g1^9*g2^9*t^2.95 + g1^3*g2^3*t^2.98 + (2*t^3.02)/(g1^3*g2^3) + g1^8*g2^8*t^3.96 + (3*t^4.02)/(g1^4*g2^4) + t^4.05/(g1^10*g2^10) + t^4.08/(g1^16*g2^16) + 4*g1^7*g2^7*t^4.96 + 3*g1*g2*t^4.99 + (5*t^5.03)/(g1^5*g2^5) + (2*t^5.06)/(g1^11*g2^11) + (g1^14*t^5.45)/g2^13 + (2*g2^26*t^5.48)/g1 + (g1^2*t^5.51)/g2^25 + 3*g1^18*g2^18*t^5.91 + g1^12*g2^12*t^5.94 + 6*g1^6*g2^6*t^5.97 - 3*t^6. + (6*t^6.03)/(g1^6*g2^6) + (2*t^6.06)/(g1^12*g2^12) + t^6.09/(g1^18*g2^18) + t^6.12/(g1^24*g2^24) + (g1^13*t^6.46)/g2^14 + (2*g2^25*t^6.49)/g1^2 + (g1*t^6.52)/g2^26 + 2*g1^17*g2^17*t^6.91 + 10*g1^5*g2^5*t^6.97 + (2*t^7.01)/(g1*g2) + (11*t^7.04)/(g1^7*g2^7) + (4*t^7.07)/(g1^13*g2^13) + (2*t^7.1)/(g1^19*g2^19) + (g1^24*t^7.4)/g2^3 + (2*g1^12*t^7.46)/g2^15 - g1^3*g2^30*t^7.46 - (g1^6*t^7.49)/g2^21 + (6*g2^24*t^7.49)/g1^3 + (2*t^7.52)/g2^27 + (g2^18*t^7.52)/g1^9 + t^7.55/(g1^6*g2^33) + t^7.58/(g1^12*g2^39) + 8*g1^16*g2^16*t^7.92 + 3*g1^10*g2^10*t^7.95 + 16*g1^4*g2^4*t^7.98 - (2*t^8.01)/(g1^2*g2^2) + (10*t^8.04)/(g1^8*g2^8) + (4*t^8.07)/(g1^14*g2^14) + (2*t^8.1)/(g1^20*g2^20) + t^8.13/(g1^26*g2^26) + t^8.16/(g1^32*g2^32) + (2*g1^23*t^8.41)/g2^4 - (g1^17*t^8.44)/g2^10 + 4*g1^8*g2^35*t^8.44 + (5*g1^11*t^8.47)/g2^16 - 2*g1^2*g2^29*t^8.47 - (2*g1^5*t^8.5)/g2^22 + (6*g2^23*t^8.5)/g1^4 + (3*t^8.53)/(g1*g2^28) - (2*g2^17*t^8.53)/g1^10 - t^8.56/(g1^7*g2^34) + 4*g1^27*g2^27*t^8.86 + g1^21*g2^21*t^8.89 + 11*g1^15*g2^15*t^8.92 - 9*g1^9*g2^9*t^8.95 + 19*g1^3*g2^3*t^8.98 - t^4.01/(g1*g2*y) - t^5.01/(g1^2*g2^2*y) - t^6.02/(g1^3*g2^3*y) - t^6.05/(g1^9*g2^9*y) - (2*g1^8*g2^8*t^6.96)/y - (g1^2*g2^2*t^6.99)/y - (3*t^7.02)/(g1^4*g2^4*y) + (g1^7*g2^7*t^7.96)/y + (3*g1*g2*t^7.99)/y + t^8.06/(g1^11*g2^11*y) - t^8.09/(g1^17*g2^17*y) + (g1^18*g2^18*t^8.91)/y + (2*g1^12*g2^12*t^8.94)/y + (2*g1^6*g2^6*t^8.97)/y - (t^4.01*y)/(g1*g2) - (t^5.01*y)/(g1^2*g2^2) - (t^6.02*y)/(g1^3*g2^3) - (t^6.05*y)/(g1^9*g2^9) - 2*g1^8*g2^8*t^6.96*y - g1^2*g2^2*t^6.99*y - (3*t^7.02*y)/(g1^4*g2^4) + g1^7*g2^7*t^7.96*y + 3*g1*g2*t^7.99*y + (t^8.06*y)/(g1^11*g2^11) - (t^8.09*y)/(g1^17*g2^17) + g1^18*g2^18*t^8.91*y + 2*g1^12*g2^12*t^8.94*y + 2*g1^6*g2^6*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57651 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4955 1.727 0.8659 [X:[], M:[0.99, 0.6722], q:[0.5044, 0.4856], qb:[0.5056, 0.4844], phi:[0.3367]] 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + t^4.03 + 3*t^4.04 + 3*t^4.93 + t^4.98 + 7*t^4.99 + 3*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + 3*t^5.88 + t^5.93 + 5*t^5.94 + t^5.95 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail