Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60027 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4963 1.7259 0.867 [X:[], M:[0.9974, 0.6984, 0.9726], q:[0.5164, 0.4812], qb:[0.4862, 0.5111], phi:[0.3342]] [X:[], M:[[3, 0, 3], [-8, -1, 1], [3, 1, -6]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.01 + t^2.1 + t^2.9 + t^2.92 + t^2.98 + t^2.99 + t^3.01 + t^3.98 + 2*t^4.01 + t^4.08 + t^4.1 + t^4.19 + 2*t^4.91 + t^4.92 + 2*t^4.98 + 2*t^5. + 3*t^5.01 + t^5.07 + 2*t^5.09 + t^5.1 + t^5.44 + t^5.45 + t^5.53 + t^5.54 + t^5.8 + t^5.82 + t^5.84 + t^5.88 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.97 + 3*t^5.98 - 3*t^6. + 3*t^6.02 + t^6.09 + t^6.11 + t^6.18 + t^6.2 + t^6.29 + t^6.44 + t^6.46 + t^6.53 + t^6.55 + t^6.88 + 3*t^6.91 + t^6.93 + t^6.96 + t^6.97 + 5*t^6.99 + 2*t^7. + 4*t^7.02 + t^7.06 + 2*t^7.08 + 4*t^7.09 + 2*t^7.11 + t^7.17 + 2*t^7.18 + t^7.2 + t^7.34 + t^7.38 + t^7.44 + t^7.46 + 2*t^7.53 + 2*t^7.55 + t^7.61 + t^7.62 + t^7.64 + t^7.65 + 2*t^7.81 + 2*t^7.83 + t^7.84 + 3*t^7.88 + 2*t^7.9 + 5*t^7.92 + t^7.93 + 3*t^7.96 + 2*t^7.97 + 7*t^7.99 - 2*t^8.01 + 5*t^8.02 + t^8.05 + 3*t^8.06 + t^8.08 + t^8.11 + t^8.17 + t^8.19 + t^8.2 + t^8.28 + t^8.29 + t^8.34 + t^8.36 + t^8.38 + t^8.42 + 2*t^8.43 + 3*t^8.45 + t^8.46 - t^8.48 + t^8.5 + t^8.52 + 2*t^8.54 + t^8.55 - t^8.57 + t^8.71 + t^8.72 + t^8.74 + t^8.75 + t^8.78 + t^8.8 + 2*t^8.81 + t^8.83 + t^8.86 + t^8.87 + 4*t^8.89 - 4*t^8.9 + 2*t^8.92 + 2*t^8.93 + t^8.95 + 4*t^8.96 - 2*t^8.98 + 5*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.1/y - t^6.9/y - t^6.92/y - t^6.98/y - t^6.99/y - (2*t^7.01)/y + t^7.91/y + (2*t^8.)/y + t^8.07/y + t^8.09/y - t^8.19/y + t^8.82/y + t^8.88/y + (2*t^8.89)/y + t^8.91/y + t^8.97/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.1*y - t^6.9*y - t^6.92*y - t^6.98*y - t^6.99*y - 2*t^7.01*y + t^7.91*y + 2*t^8.*y + t^8.07*y + t^8.09*y - t^8.19*y + t^8.82*y + t^8.88*y + 2*t^8.89*y + t^8.91*y + t^8.97*y t^2.01/(g1^2*g3^2) + (g3*t^2.1)/(g1^8*g2) + g1^9*g2*t^2.9 + (g1^3*g2*t^2.92)/g3^6 + g1^9*g3^9*t^2.98 + g1^3*g3^3*t^2.99 + t^3.01/(g1^3*g3^3) + g1^8*g3^8*t^3.98 + (2*t^4.01)/(g1^4*g3^4) + (g3^5*t^4.08)/(g1^4*g2) + t^4.1/(g1^10*g2*g3) + (g3^2*t^4.19)/(g1^16*g2^2) + (2*g1^7*g2*t^4.91)/g3^2 + (g1*g2*t^4.92)/g3^8 + 2*g1^7*g3^7*t^4.98 + 2*g1*g3*t^5. + (3*t^5.01)/(g1^5*g3^5) + (g1*g3^10*t^5.07)/g2 + (2*g3^4*t^5.09)/(g1^5*g2) + t^5.1/(g1^11*g2*g3^2) + (g1^14*t^5.44)/(g2*g3^4) + (g2^2*g3^8*t^5.45)/g1 + (g2*g3^17*t^5.53)/g1 + (g1^2*t^5.54)/(g2^2*g3^7) + g1^18*g2^2*t^5.8 + (g1^12*g2^2*t^5.82)/g3^6 + (g1^6*g2^2*t^5.84)/g3^12 + g1^18*g2*g3^9*t^5.88 + g1^12*g2*g3^3*t^5.89 + (2*g1^6*g2*t^5.91)/g3^3 + g1^18*g3^18*t^5.95 + g1^12*g3^12*t^5.97 + 3*g1^6*g3^6*t^5.98 - 3*t^6. + (3*t^6.02)/(g1^6*g3^6) + (g3^3*t^6.09)/(g1^6*g2) + t^6.11/(g1^12*g2*g3^3) + (g3^6*t^6.18)/(g1^12*g2^2) + t^6.2/(g1^18*g2^2) + (g3^3*t^6.29)/(g1^24*g2^3) + (g1^13*t^6.44)/(g2*g3^5) + (g2^2*g3^7*t^6.46)/g1^2 + (g2*g3^16*t^6.53)/g1^2 + (g1*t^6.55)/(g2^2*g3^8) + g1^17*g2*g3^8*t^6.88 + (3*g1^5*g2*t^6.91)/g3^4 + (g2*t^6.93)/(g1*g3^10) + g1^17*g3^17*t^6.96 + g1^11*g3^11*t^6.97 + 5*g1^5*g3^5*t^6.99 + (2*t^7.)/(g1*g3) + (4*t^7.02)/(g1^7*g3^7) + (g1^5*g3^14*t^7.06)/g2 + (2*g3^8*t^7.08)/(g1*g2) + (4*g3^2*t^7.09)/(g1^7*g2) + (2*t^7.11)/(g1^13*g2*g3^4) + (g3^11*t^7.17)/(g1^7*g2^2) + (2*g3^5*t^7.18)/(g1^13*g2^2) + t^7.2/(g1^19*g2^2*g3) + (g1^24*t^7.34)/g3^3 + (g2^3*t^7.38)/(g1^3*g3^3) + (2*g1^12*t^7.44)/(g2*g3^6) - g1^3*g2^2*g3^12*t^7.44 - (g1^6*t^7.46)/(g2*g3^12) + (2*g2^2*g3^6*t^7.46)/g1^3 + (2*g2*g3^15*t^7.53)/g1^3 + (2*t^7.55)/(g2^2*g3^9) + (g3^24*t^7.61)/g1^3 + (g3^18*t^7.62)/g1^9 + t^7.64/(g1^6*g2^3*g3^6) + t^7.65/(g1^12*g2^3*g3^12) + (2*g1^16*g2^2*t^7.81)/g3^2 + (2*g1^10*g2^2*t^7.83)/g3^8 + (g1^4*g2^2*t^7.84)/g3^14 + 3*g1^16*g2*g3^7*t^7.88 + 2*g1^10*g2*g3*t^7.9 + (5*g1^4*g2*t^7.92)/g3^5 + (g2*t^7.93)/(g1^2*g3^11) + 3*g1^16*g3^16*t^7.96 + 2*g1^10*g3^10*t^7.97 + 7*g1^4*g3^4*t^7.99 - (2*t^8.01)/(g1^2*g3^2) + (5*t^8.02)/(g1^8*g3^8) + (g1^10*g3^19*t^8.05)/g2 + (3*g1^4*g3^13*t^8.06)/g2 + (g3^7*t^8.08)/(g1^2*g2) + t^8.11/(g1^14*g2*g3^5) + (g3^10*t^8.17)/(g1^8*g2^2) + (g3^4*t^8.19)/(g1^14*g2^2) + t^8.2/(g1^20*g2^2*g3^2) + (g3^7*t^8.28)/(g1^20*g2^3) + (g3*t^8.29)/(g1^26*g2^3) + (g1^23*t^8.34)/g3^4 + g1^8*g2^3*g3^8*t^8.36 + (g3^4*t^8.38)/(g1^32*g2^4) + (g1^23*g3^5*t^8.42)/g2 + 2*g1^8*g2^2*g3^17*t^8.43 + (3*g1^11*t^8.45)/(g2*g3^7) - (g1^5*t^8.46)/(g2*g3^13) + (2*g2^2*g3^5*t^8.46)/g1^4 - (g2^2*t^8.48)/(g1^10*g3) + g1^8*g2*g3^26*t^8.5 + (g1^11*g3^2*t^8.52)/g2^2 + (2*g2*g3^14*t^8.54)/g1^4 + (2*t^8.55)/(g1*g2^2*g3^10) - (g2*g3^8*t^8.55)/g1^10 - t^8.57/(g1^7*g2^2*g3^16) + g1^27*g2^3*t^8.71 + (g1^21*g2^3*t^8.72)/g3^6 + (g1^15*g2^3*t^8.74)/g3^12 + (g1^9*g2^3*t^8.75)/g3^18 + g1^27*g2^2*g3^9*t^8.78 + g1^21*g2^2*g3^3*t^8.8 + (2*g1^15*g2^2*t^8.81)/g3^3 + (g1^9*g2^2*t^8.83)/g3^9 + g1^27*g2*g3^18*t^8.86 + g1^21*g2*g3^12*t^8.87 + 4*g1^15*g2*g3^6*t^8.89 - 4*g1^9*g2*t^8.9 + (2*g1^3*g2*t^8.92)/g3^6 + (g2*t^8.93)/(g1^3*g3^12) + g1^27*g3^27*t^8.93 + g1^21*g3^21*t^8.95 + 4*g1^15*g3^15*t^8.96 - 2*g1^9*g3^9*t^8.98 + 5*g1^3*g3^3*t^8.99 - t^4./(g1*g3*y) - t^5.01/(g1^2*g3^2*y) - t^6.01/(g1^3*g3^3*y) - t^6.1/(g1^9*g2*y) - (g1^8*g2*t^6.9)/(g3*y) - (g1^2*g2*t^6.92)/(g3^7*y) - (g1^8*g3^8*t^6.98)/y - (g1^2*g3^2*t^6.99)/y - (2*t^7.01)/(g1^4*g3^4*y) + (g1^7*g2*t^7.91)/(g3^2*y) + (2*g1*g3*t^8.)/y + (g1*g3^10*t^8.07)/(g2*y) + (g3^4*t^8.09)/(g1^5*g2*y) - (g3*t^8.19)/(g1^17*g2^2*y) + (g1^12*g2^2*t^8.82)/(g3^6*y) + (g1^18*g2*g3^9*t^8.88)/y + (2*g1^12*g2*g3^3*t^8.89)/y + (g1^6*g2*t^8.91)/(g3^3*y) + (g1^12*g3^12*t^8.97)/y - (t^4.*y)/(g1*g3) - (t^5.01*y)/(g1^2*g3^2) - (t^6.01*y)/(g1^3*g3^3) - (t^6.1*y)/(g1^9*g2) - (g1^8*g2*t^6.9*y)/g3 - (g1^2*g2*t^6.92*y)/g3^7 - g1^8*g3^8*t^6.98*y - g1^2*g3^2*t^6.99*y - (2*t^7.01*y)/(g1^4*g3^4) + (g1^7*g2*t^7.91*y)/g3^2 + 2*g1*g3*t^8.*y + (g1*g3^10*t^8.07*y)/g2 + (g3^4*t^8.09*y)/(g1^5*g2) - (g3*t^8.19*y)/(g1^17*g2^2) + (g1^12*g2^2*t^8.82*y)/g3^6 + g1^18*g2*g3^9*t^8.88*y + 2*g1^12*g2*g3^3*t^8.89*y + (g1^6*g2*t^8.91*y)/g3^3 + g1^12*g3^12*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57651 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4955 1.727 0.8659 [X:[], M:[0.99, 0.6722], q:[0.5044, 0.4856], qb:[0.5056, 0.4844], phi:[0.3367]] 2*t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + t^3.98 + t^4.03 + 3*t^4.04 + 3*t^4.93 + t^4.98 + 7*t^4.99 + 3*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + 3*t^5.88 + t^5.93 + 5*t^5.94 + t^5.95 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail