Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57576 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4843 1.7053 0.8704 [X:[1.3536], M:[0.6707, 0.6707], q:[0.5752, 0.5264], qb:[0.4796, 0.4796], phi:[0.3232]] [X:[[0, 0, 2]], M:[[1, 2, -10], [2, 1, -10]], q:[[1, 1, -5], [-2, -2, 11]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -5 2*t^2.01 + t^2.91 + 2*t^3.02 + 2*t^3.16 + 3*t^4.02 + t^4.06 + 2*t^4.13 + 2*t^4.92 + 2*t^4.96 + 4*t^5.03 + 2*t^5.1 + 4*t^5.18 + 2*t^5.29 + t^5.82 + 2*t^5.93 - 5*t^6. + 7*t^6.04 + 4*t^6.07 + 3*t^6.15 + 4*t^6.18 + 2*t^6.26 + 3*t^6.33 + 3*t^6.93 + t^6.97 + 8*t^7.04 + 2*t^7.08 + 3*t^7.12 + 3*t^7.15 + 6*t^7.19 + 6*t^7.23 + 7*t^7.3 + t^7.65 + 2*t^7.83 + t^7.94 + 4*t^7.98 - 8*t^8.01 + 9*t^8.05 + 7*t^8.09 + 4*t^8.12 + 4*t^8.16 + 10*t^8.19 + 7*t^8.27 + 4*t^8.3 + 6*t^8.34 + 4*t^8.45 - 2*t^8.69 + t^8.73 - 4*t^8.91 + 7*t^8.95 - 2*t^8.98 + t^8.91/y^2 - (2*t^8.98)/y^2 - t^3.97/y - t^4.94/y - (2*t^5.98)/y - t^6.88/y - (2*t^6.95)/y - (2*t^6.99)/y + t^7.02/y - (2*t^7.13)/y - t^7.85/y + (2*t^7.92)/y - (3*t^7.99)/y + (4*t^8.03)/y - (2*t^8.1)/y + (4*t^8.18)/y - (2*t^8.89)/y + (2*t^8.93)/y - (3*t^8.96)/y - t^3.97*y - t^4.94*y - 2*t^5.98*y - t^6.88*y - 2*t^6.95*y - 2*t^6.99*y + t^7.02*y - 2*t^7.13*y - t^7.85*y + 2*t^7.92*y - 3*t^7.99*y + 4*t^8.03*y - 2*t^8.1*y + 4*t^8.18*y - 2*t^8.89*y + 2*t^8.93*y - 3*t^8.96*y + t^8.91*y^2 - 2*t^8.98*y^2 (g1^2*g2*t^2.01)/g3^10 + (g1*g2^2*t^2.01)/g3^10 + t^2.91/g3^3 + (g3^11*t^3.02)/(g1*g2^2) + (g3^11*t^3.02)/(g1^2*g2) + (g1^2*g2*t^3.16)/g3^5 + (g1*g2^2*t^3.16)/g3^5 + (g1^4*g2^2*t^4.02)/g3^20 + (g1^3*g2^3*t^4.02)/g3^20 + (g1^2*g2^4*t^4.02)/g3^20 + g3^2*t^4.06 + (g1^2*g2*t^4.13)/g3^6 + (g1*g2^2*t^4.13)/g3^6 + (g1^2*g2*t^4.92)/g3^13 + (g1*g2^2*t^4.92)/g3^13 + (g3^9*t^4.96)/(g1*g2^2) + (g3^9*t^4.96)/(g1^2*g2) + 2*g3*t^5.03 + (g1*g3*t^5.03)/g2 + (g2*g3*t^5.03)/g1 + (g1^2*g2*t^5.1)/g3^7 + (g1*g2^2*t^5.1)/g3^7 + (g1^4*g2^2*t^5.18)/g3^15 + (2*g1^3*g2^3*t^5.18)/g3^15 + (g1^2*g2^4*t^5.18)/g3^15 + (g1^2*g2*t^5.29)/g3 + (g1*g2^2*t^5.29)/g3 + t^5.82/g3^6 + (g3^8*t^5.93)/(g1*g2^2) + (g3^8*t^5.93)/(g1^2*g2) - 3*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 + (g1^6*g2^3*t^6.04)/g3^30 + (g1^5*g2^4*t^6.04)/g3^30 + (g1^4*g2^5*t^6.04)/g3^30 + (g1^3*g2^6*t^6.04)/g3^30 + (g3^22*t^6.04)/(g1^2*g2^4) + (g3^22*t^6.04)/(g1^3*g2^3) + (g3^22*t^6.04)/(g1^4*g2^2) + (2*g1^2*g2*t^6.07)/g3^8 + (2*g1*g2^2*t^6.07)/g3^8 + (g1^4*g2^2*t^6.15)/g3^16 + (g1^3*g2^3*t^6.15)/g3^16 + (g1^2*g2^4*t^6.15)/g3^16 + 2*g3^6*t^6.18 + (g1*g3^6*t^6.18)/g2 + (g2*g3^6*t^6.18)/g1 + (g1^2*g2*t^6.26)/g3^2 + (g1*g2^2*t^6.26)/g3^2 + (g1^4*g2^2*t^6.33)/g3^10 + (g1^3*g2^3*t^6.33)/g3^10 + (g1^2*g2^4*t^6.33)/g3^10 + (g1^4*g2^2*t^6.93)/g3^23 + (g1^3*g2^3*t^6.93)/g3^23 + (g1^2*g2^4*t^6.93)/g3^23 + t^6.97/g3 + (g1^3*t^7.04)/g3^9 + (3*g1^2*g2*t^7.04)/g3^9 + (3*g1*g2^2*t^7.04)/g3^9 + (g2^3*t^7.04)/g3^9 + (g3^13*t^7.08)/(g1*g2^2) + (g3^13*t^7.08)/(g1^2*g2) + (g1^4*g2^2*t^7.12)/g3^17 + (g1^3*g2^3*t^7.12)/g3^17 + (g1^2*g2^4*t^7.12)/g3^17 + g3^5*t^7.15 + (g1*g3^5*t^7.15)/g2 + (g2*g3^5*t^7.15)/g1 + (g1^6*g2^3*t^7.19)/g3^25 + (2*g1^5*g2^4*t^7.19)/g3^25 + (2*g1^4*g2^5*t^7.19)/g3^25 + (g1^3*g2^6*t^7.19)/g3^25 + (g1^3*t^7.23)/g3^3 + (2*g1^2*g2*t^7.23)/g3^3 + (2*g1*g2^2*t^7.23)/g3^3 + (g2^3*t^7.23)/g3^3 + (2*g1^4*g2^2*t^7.3)/g3^11 + (3*g1^3*g2^3*t^7.3)/g3^11 + (2*g1^2*g2^4*t^7.3)/g3^11 + (g3^30*t^7.65)/(g1^6*g2^6) + (g1^2*g2*t^7.83)/g3^16 + (g1*g2^2*t^7.83)/g3^16 + t^7.94/g3^2 + (g3^20*t^7.98)/(g1^2*g2^4) + (2*g3^20*t^7.98)/(g1^3*g2^3) + (g3^20*t^7.98)/(g1^4*g2^2) - (g1^3*t^8.01)/g3^10 - (3*g1^2*g2*t^8.01)/g3^10 - (3*g1*g2^2*t^8.01)/g3^10 - (g2^3*t^8.01)/g3^10 + (g1^8*g2^4*t^8.05)/g3^40 + (g1^7*g2^5*t^8.05)/g3^40 + (g1^6*g2^6*t^8.05)/g3^40 + (g1^5*g2^7*t^8.05)/g3^40 + (g1^4*g2^8*t^8.05)/g3^40 + (g3^12*t^8.05)/g1^3 + (g3^12*t^8.05)/g2^3 + (g3^12*t^8.05)/(g1*g2^2) + (g3^12*t^8.05)/(g1^2*g2) + (2*g1^4*g2^2*t^8.09)/g3^18 + (3*g1^3*g2^3*t^8.09)/g3^18 + (2*g1^2*g2^4*t^8.09)/g3^18 + 2*g3^4*t^8.12 + (g1*g3^4*t^8.12)/g2 + (g2*g3^4*t^8.12)/g1 + (g1^6*g2^3*t^8.16)/g3^26 + (g1^5*g2^4*t^8.16)/g3^26 + (g1^4*g2^5*t^8.16)/g3^26 + (g1^3*g2^6*t^8.16)/g3^26 + (g1^3*t^8.19)/g3^4 + (4*g1^2*g2*t^8.19)/g3^4 + (4*g1*g2^2*t^8.19)/g3^4 + (g2^3*t^8.19)/g3^4 + (2*g1^4*g2^2*t^8.27)/g3^12 + (3*g1^3*g2^3*t^8.27)/g3^12 + (2*g1^2*g2^4*t^8.27)/g3^12 + 2*g3^10*t^8.3 + (g1*g3^10*t^8.3)/g2 + (g2*g3^10*t^8.3)/g1 + (g1^6*g2^3*t^8.34)/g3^20 + (2*g1^5*g2^4*t^8.34)/g3^20 + (2*g1^4*g2^5*t^8.34)/g3^20 + (g1^3*g2^6*t^8.34)/g3^20 + (g1^4*g2^2*t^8.45)/g3^6 + (2*g1^3*g2^3*t^8.45)/g3^6 + (g1^2*g2^4*t^8.45)/g3^6 - (g3^21*t^8.69)/(g1^4*g2^5) - (g3^21*t^8.69)/(g1^5*g2^4) + t^8.73/g3^9 - (2*t^8.91)/g3^3 - (g1*t^8.91)/(g2*g3^3) - (g2*t^8.91)/(g1*g3^3) + (g1^6*g2^3*t^8.95)/g3^33 + (g1^5*g2^4*t^8.95)/g3^33 + (g1^4*g2^5*t^8.95)/g3^33 + (g1^3*g2^6*t^8.95)/g3^33 + (g3^19*t^8.95)/(g1^2*g2^4) + (g3^19*t^8.95)/(g1^3*g2^3) + (g3^19*t^8.95)/(g1^4*g2^2) - (g1^2*g2*t^8.98)/g3^11 - (g1*g2^2*t^8.98)/g3^11 + t^8.91/(g3^3*y^2) - (g1^2*g2*t^8.98)/(g3^11*y^2) - (g1*g2^2*t^8.98)/(g3^11*y^2) - t^3.97/(g3*y) - t^4.94/(g3^2*y) - (g1^2*g2*t^5.98)/(g3^11*y) - (g1*g2^2*t^5.98)/(g3^11*y) - t^6.88/(g3^4*y) - (g1^2*g2*t^6.95)/(g3^12*y) - (g1*g2^2*t^6.95)/(g3^12*y) - (g3^10*t^6.99)/(g1*g2^2*y) - (g3^10*t^6.99)/(g1^2*g2*y) + (g1^3*g2^3*t^7.02)/(g3^20*y) - (g1^2*g2*t^7.13)/(g3^6*y) - (g1*g2^2*t^7.13)/(g3^6*y) - t^7.85/(g3^5*y) + (g1^2*g2*t^7.92)/(g3^13*y) + (g1*g2^2*t^7.92)/(g3^13*y) - (g1^4*g2^2*t^7.99)/(g3^21*y) - (g1^3*g2^3*t^7.99)/(g3^21*y) - (g1^2*g2^4*t^7.99)/(g3^21*y) + (2*g3*t^8.03)/y + (g1*g3*t^8.03)/(g2*y) + (g2*g3*t^8.03)/(g1*y) - (g1^2*g2*t^8.1)/(g3^7*y) - (g1*g2^2*t^8.1)/(g3^7*y) + (g1^4*g2^2*t^8.18)/(g3^15*y) + (2*g1^3*g2^3*t^8.18)/(g3^15*y) + (g1^2*g2^4*t^8.18)/(g3^15*y) - (g1^2*g2*t^8.89)/(g3^14*y) - (g1*g2^2*t^8.89)/(g3^14*y) + (g3^8*t^8.93)/(g1*g2^2*y) + (g3^8*t^8.93)/(g1^2*g2*y) - (g1^4*g2^2*t^8.96)/(g3^22*y) - (g1^3*g2^3*t^8.96)/(g3^22*y) - (g1^2*g2^4*t^8.96)/(g3^22*y) - (t^3.97*y)/g3 - (t^4.94*y)/g3^2 - (g1^2*g2*t^5.98*y)/g3^11 - (g1*g2^2*t^5.98*y)/g3^11 - (t^6.88*y)/g3^4 - (g1^2*g2*t^6.95*y)/g3^12 - (g1*g2^2*t^6.95*y)/g3^12 - (g3^10*t^6.99*y)/(g1*g2^2) - (g3^10*t^6.99*y)/(g1^2*g2) + (g1^3*g2^3*t^7.02*y)/g3^20 - (g1^2*g2*t^7.13*y)/g3^6 - (g1*g2^2*t^7.13*y)/g3^6 - (t^7.85*y)/g3^5 + (g1^2*g2*t^7.92*y)/g3^13 + (g1*g2^2*t^7.92*y)/g3^13 - (g1^4*g2^2*t^7.99*y)/g3^21 - (g1^3*g2^3*t^7.99*y)/g3^21 - (g1^2*g2^4*t^7.99*y)/g3^21 + 2*g3*t^8.03*y + (g1*g3*t^8.03*y)/g2 + (g2*g3*t^8.03*y)/g1 - (g1^2*g2*t^8.1*y)/g3^7 - (g1*g2^2*t^8.1*y)/g3^7 + (g1^4*g2^2*t^8.18*y)/g3^15 + (2*g1^3*g2^3*t^8.18*y)/g3^15 + (g1^2*g2^4*t^8.18*y)/g3^15 - (g1^2*g2*t^8.89*y)/g3^14 - (g1*g2^2*t^8.89*y)/g3^14 + (g3^8*t^8.93*y)/(g1*g2^2) + (g3^8*t^8.93*y)/(g1^2*g2) - (g1^4*g2^2*t^8.96*y)/g3^22 - (g1^3*g2^3*t^8.96*y)/g3^22 - (g1^2*g2^4*t^8.96*y)/g3^22 + (t^8.91*y^2)/g3^3 - (g1^2*g2*t^8.98*y^2)/g3^11 - (g1*g2^2*t^8.98*y^2)/g3^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
59420 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{2}\tilde{q}_{2}X_{3}$ 1.2267 1.4068 0.872 [X:[1.2237, 1.3882, 1.3882], M:[1.0, 1.0], q:[0.6864, 0.2391], qb:[0.3728, 0.3728], phi:[0.3882]] 2*t^3. + 2*t^3.18 + t^3.49 + t^3.67 + 4*t^4.16 + 2*t^4.34 + 2*t^4.52 + 2*t^5.51 + t^5.65 + 2*t^5.68 - 2*t^6. - t^4.16/y - t^5.33/y - t^4.16*y - t^5.33*y detail
59488 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.331 1.5314 0.8692 [X:[1.2821, 1.359], M:[1.0, 0.7427], q:[0.6493, 0.3424], qb:[0.2986, 0.5559], phi:[0.359]] t^2.23 + t^2.7 + t^2.84 + t^3. + t^3.23 + t^3.62 + t^3.85 + t^3.92 + 2*t^4.08 + t^4.46 + t^4.54 + t^4.69 + t^4.85 + t^4.92 + t^5. + t^5.07 + t^5.31 + t^5.39 + t^5.46 + t^5.54 + t^5.61 + t^5.69 + t^5.7 + t^5.77 + 2*t^5.84 + t^5.92 + t^5.93 - 2*t^6. - t^4.08/y - t^5.15/y - t^4.08*y - t^5.15*y detail
58883 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4092 1.6427 0.8579 [X:[1.2654], M:[0.7737, 0.8981], q:[0.6118, 0.4092], qb:[0.4498, 0.3254], phi:[0.3673]] t^2.2 + t^2.32 + t^2.58 + t^2.69 + t^2.81 + t^3.18 + t^3.31 + t^3.8 + t^3.91 + t^4.29 + t^4.4 + 2*t^4.41 + t^4.53 + t^4.64 + 3*t^4.78 + 2*t^4.9 + 3*t^5.02 + t^5.13 + t^5.15 + t^5.27 + 4*t^5.39 + 4*t^5.51 + t^5.62 + t^5.76 + 3*t^5.88 - t^4.1/y - t^5.2/y - t^4.1*y - t^5.2*y detail
58821 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4822 1.7051 0.8693 [X:[1.3422], M:[0.6838, 0.6838, 1.0133], q:[0.5744, 0.5223], qb:[0.4649, 0.4649], phi:[0.3289]] 2*t^2.05 + 2*t^2.96 + t^3.04 + 2*t^3.12 + t^4.03 + 5*t^4.1 + 2*t^4.94 + 4*t^5.01 + 4*t^5.09 + 6*t^5.17 + 3*t^5.92 - 3*t^6. - t^3.99/y - t^4.97/y - t^3.99*y - t^4.97*y detail
60480 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{6}$ 1.4817 1.7075 0.8678 [X:[1.3333], M:[0.6941, 0.6941], q:[0.5738, 0.519], qb:[0.4536, 0.4536], phi:[0.3333]] 2*t^2.08 + 2*t^2.92 + t^3. + 2*t^3.08 + t^4. + 2*t^4.08 + 3*t^4.16 + 2*t^4.92 + 4*t^5. + 6*t^5.08 + 4*t^5.16 + 3*t^5.84 + 2*t^5.92 - t^4./y - t^5./y - t^4.*y - t^5.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47921 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4635 1.664 0.8795 [X:[1.3534], M:[0.671], q:[0.5755, 0.5258], qb:[0.4799, 0.479], phi:[0.3233]] t^2.013 + t^2.91 + t^3.014 + t^3.017 + t^3.163 + t^3.166 + t^3.984 + t^4.026 + t^4.06 + t^4.133 + t^4.136 + t^4.923 + t^4.954 + t^4.957 + t^5.027 + t^5.03 + t^5.103 + t^5.106 + t^5.176 + t^5.179 + t^5.283 + t^5.286 + t^5.82 + t^5.924 + t^5.927 - 3*t^6. - t^3.97/y - t^4.94/y - t^5.983/y - t^3.97*y - t^4.94*y - t^5.983*y detail