Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58883 | SU3adj1nf2 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4092 | 1.6427 | 0.8579 | [X:[1.2654], M:[0.7737, 0.8981], q:[0.6118, 0.4092], qb:[0.4498, 0.3254], phi:[0.3673]] | [X:[[0, 4]], M:[[3, -7], [0, 6]], q:[[1, 3], [-2, -4]], qb:[[-1, 13], [2, 0]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}X_{1}$ | 0 | t^2.2 + t^2.32 + t^2.58 + t^2.69 + t^2.81 + t^3.18 + t^3.31 + t^3.8 + t^3.91 + t^4.29 + t^4.4 + 2*t^4.41 + t^4.53 + t^4.64 + 3*t^4.78 + 2*t^4.9 + 3*t^5.02 + t^5.13 + t^5.15 + t^5.27 + 4*t^5.39 + 4*t^5.51 + t^5.62 + t^5.76 + 3*t^5.88 + 3*t^6.12 + 2*t^6.23 + t^6.37 + 3*t^6.49 + 7*t^6.61 + 3*t^6.73 + t^6.85 + t^6.86 + t^6.96 + 8*t^6.98 + t^6.99 + 5*t^7.1 + 6*t^7.22 + 3*t^7.34 + 2*t^7.35 + 2*t^7.36 + t^7.45 + 3*t^7.47 + 9*t^7.59 + 8*t^7.71 + t^7.73 + 4*t^7.83 + t^7.85 + t^7.94 + t^7.96 + 4*t^7.97 + 7*t^8.08 + t^8.09 + 5*t^8.2 - t^8.21 + 5*t^8.32 + t^8.34 + t^8.43 + 3*t^8.44 + 3*t^8.46 + 2*t^8.56 + 5*t^8.57 - 4*t^8.58 + 7*t^8.69 + 7*t^8.81 + 3*t^8.82 + 7*t^8.93 + t^8.95 - t^4.1/y - t^5.2/y - t^6.31/y - t^6.42/y - t^6.68/y - t^6.8/y - t^6.91/y - t^7.29/y - t^7.41/y + t^7.78/y + t^7.9/y + t^8.02/y + t^8.13/y + t^8.27/y + t^8.39/y + t^8.51/y - t^8.74/y + t^8.76/y + t^8.88/y - t^4.1*y - t^5.2*y - t^6.31*y - t^6.42*y - t^6.68*y - t^6.8*y - t^6.91*y - t^7.29*y - t^7.41*y + t^7.78*y + t^7.9*y + t^8.02*y + t^8.13*y + t^8.27*y + t^8.39*y + t^8.51*y - t^8.74*y + t^8.76*y + t^8.88*y | t^2.2/g2^4 + (g1^3*t^2.32)/g2^7 + (g2^9*t^2.58)/g1^3 + g2^6*t^2.69 + g1^3*g2^3*t^2.81 + g2^16*t^3.18 + t^3.31/g2^6 + g2^4*t^3.8 + g1^3*g2*t^3.91 + g2^14*t^4.29 + g1^3*g2^11*t^4.4 + (2*t^4.41)/g2^8 + (g1^3*t^4.53)/g2^11 + (g1^6*t^4.64)/g2^14 + (2*g2^5*t^4.78)/g1^3 + g2^24*t^4.78 + 2*g2^2*t^4.9 + (3*g1^3*t^5.02)/g2 + (g1^6*t^5.13)/g2^4 + (g2^18*t^5.15)/g1^6 + (g2^15*t^5.27)/g1^3 + 4*g2^12*t^5.39 + t^5.51/g2^10 + 3*g1^3*g2^9*t^5.51 + g1^6*g2^6*t^5.62 + (g2^25*t^5.76)/g1^3 + (g2^3*t^5.88)/g1^3 + 2*g2^22*t^5.88 - t^6. + g1^3*g2^19*t^6. + (3*g1^3*t^6.12)/g2^3 + (2*g1^6*t^6.23)/g2^6 + g2^32*t^6.37 + 3*g2^10*t^6.49 + (3*t^6.61)/g2^12 + 4*g1^3*g2^7*t^6.61 + (g1^3*t^6.73)/g2^15 + 2*g1^6*g2^4*t^6.73 + (g1^6*t^6.85)/g2^18 + (g2^23*t^6.86)/g1^3 + (g1^9*t^6.96)/g2^21 + (3*g2*t^6.98)/g1^3 + 5*g2^20*t^6.98 + t^6.99/(g1^6*g2^18) + (2*t^7.1)/g2^2 + 3*g1^3*g2^17*t^7.1 + (5*g1^3*t^7.22)/g2^5 + g1^6*g2^14*t^7.22 + (3*g1^6*t^7.34)/g2^8 + (2*g2^33*t^7.35)/g1^3 + (2*g2^14*t^7.36)/g1^6 + (g1^9*t^7.45)/g2^11 + (g2^11*t^7.47)/g1^3 + 2*g2^30*t^7.47 + 7*g2^8*t^7.59 + 2*g1^3*g2^27*t^7.59 + t^7.71/g2^14 + 7*g1^3*g2^5*t^7.71 + (g2^27*t^7.73)/g1^9 - (g1^3*t^7.83)/g2^17 + 5*g1^6*g2^2*t^7.83 + (g2^24*t^7.85)/g1^6 + (g1^9*t^7.94)/g2 + g2^40*t^7.96 + (4*g2^21*t^7.97)/g1^3 + 7*g2^18*t^8.08 + t^8.09/(g1^3*g2) - (2*t^8.2)/g2^4 + 7*g1^3*g2^15*t^8.2 - t^8.21/(g1^3*g2^23) + (g1^3*t^8.32)/g2^7 + 4*g1^6*g2^12*t^8.32 + (g2^34*t^8.34)/g1^6 + g1^9*g2^9*t^8.43 + (3*g1^6*t^8.44)/g2^10 + (g2^12*t^8.46)/g1^6 + (2*g2^31*t^8.46)/g1^3 + (2*g1^9*t^8.56)/g2^13 + 5*g2^28*t^8.57 - t^8.58/(g1^6*g2^10) - (3*g2^9*t^8.58)/g1^3 + 2*g2^6*t^8.69 + 5*g1^3*g2^25*t^8.69 + 5*g1^3*g2^3*t^8.81 + 2*g1^6*g2^22*t^8.81 + (3*t^8.82)/g2^16 + 6*g1^6*t^8.93 + (g1^3*t^8.93)/g2^19 + (g2^41*t^8.95)/g1^3 - t^4.1/(g2^2*y) - t^5.2/(g2^4*y) - t^6.31/(g2^6*y) - (g1^3*t^6.42)/(g2^9*y) - (g2^7*t^6.68)/(g1^3*y) - (g2^4*t^6.8)/y - (g1^3*g2*t^6.91)/y - (g2^14*t^7.29)/y - t^7.41/(g2^8*y) + (g2^5*t^7.78)/(g1^3*y) + (g2^2*t^7.9)/y + (g1^3*t^8.02)/(g2*y) + (g1^6*t^8.13)/(g2^4*y) + (g2^15*t^8.27)/(g1^3*y) + (g2^12*t^8.39)/y - t^8.51/(g2^10*y) + (2*g1^3*g2^9*t^8.51)/y - (g1^6*t^8.74)/(g2^16*y) + (g2^25*t^8.76)/(g1^3*y) + (g2^22*t^8.88)/y - (t^4.1*y)/g2^2 - (t^5.2*y)/g2^4 - (t^6.31*y)/g2^6 - (g1^3*t^6.42*y)/g2^9 - (g2^7*t^6.68*y)/g1^3 - g2^4*t^6.8*y - g1^3*g2*t^6.91*y - g2^14*t^7.29*y - (t^7.41*y)/g2^8 + (g2^5*t^7.78*y)/g1^3 + g2^2*t^7.9*y + (g1^3*t^8.02*y)/g2 + (g1^6*t^8.13*y)/g2^4 + (g2^15*t^8.27*y)/g1^3 + g2^12*t^8.39*y - (t^8.51*y)/g2^10 + 2*g1^3*g2^9*t^8.51*y - (g1^6*t^8.74*y)/g2^16 + (g2^25*t^8.76*y)/g1^3 + g2^22*t^8.88*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57576 | SU3adj1nf2 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4843 | 1.7053 | 0.8704 | [X:[1.3536], M:[0.6707, 0.6707], q:[0.5752, 0.5264], qb:[0.4796, 0.4796], phi:[0.3232]] | 2*t^2.01 + t^2.91 + 2*t^3.02 + 2*t^3.16 + 3*t^4.02 + t^4.06 + 2*t^4.13 + 2*t^4.92 + 2*t^4.96 + 4*t^5.03 + 2*t^5.1 + 4*t^5.18 + 2*t^5.29 + t^5.82 + 2*t^5.93 - 5*t^6. - t^3.97/y - t^4.94/y - (2*t^5.98)/y - t^3.97*y - t^4.94*y - 2*t^5.98*y | detail |