Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59488 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.331 1.5314 0.8692 [X:[1.2821, 1.359], M:[1.0, 0.7427], q:[0.6493, 0.3424], qb:[0.2986, 0.5559], phi:[0.359]] [X:[[0, -2], [0, 1]], M:[[0, 0], [-3, -10]], q:[[-1, -5], [2, 9]], qb:[[-2, -10], [1, 0]], phi:[[0, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -2 t^2.23 + t^2.7 + t^2.84 + t^3. + t^3.23 + t^3.62 + t^3.85 + t^3.92 + 2*t^4.08 + t^4.46 + t^4.54 + t^4.69 + t^4.85 + t^4.92 + t^5. + t^5.07 + t^5.31 + t^5.39 + t^5.46 + t^5.54 + t^5.61 + t^5.69 + t^5.7 + t^5.77 + 2*t^5.84 + t^5.92 + t^5.93 - 2*t^6. + 2*t^6.07 + t^6.15 + t^6.23 + t^6.3 + 2*t^6.31 + t^6.39 + 2*t^6.46 + t^6.54 + t^6.62 + t^6.68 + 2*t^6.69 + 2*t^6.76 + t^6.77 + t^6.85 + 2*t^6.92 + 2*t^7.08 + 2*t^7.15 + 3*t^7.23 + t^7.3 + t^7.31 + t^7.39 + t^7.46 + 4*t^7.54 + 4*t^7.69 + 2*t^7.77 + 2*t^7.84 + 3*t^7.92 + 3*t^8. + t^8.07 + t^8.09 + 6*t^8.15 - t^8.24 + 2*t^8.3 + 2*t^8.31 + t^8.38 + t^8.39 + 3*t^8.46 + 2*t^8.53 + 3*t^8.54 + 5*t^8.61 + t^8.62 + 2*t^8.69 - 2*t^8.7 + t^8.76 + 3*t^8.77 - t^8.84 + t^8.91 + 5*t^8.92 + t^8.93 + 2*t^8.99 - t^4.08/y - t^5.15/y - t^6.3/y - t^6.77/y - t^6.92/y - t^7.31/y - t^7.38/y - t^7.69/y + t^7.92/y - t^8./y + t^8.07/y - (2*t^8.15)/y + t^8.23/y - t^8.38/y + t^8.46/y - t^8.53/y + t^8.54/y + t^8.7/y - t^8.77/y + (2*t^8.84)/y + t^8.93/y - t^4.08*y - t^5.15*y - t^6.3*y - t^6.77*y - t^6.92*y - t^7.31*y - t^7.38*y - t^7.69*y + t^7.92*y - t^8.*y + t^8.07*y - 2*t^8.15*y + t^8.23*y - t^8.38*y + t^8.46*y - t^8.53*y + t^8.54*y + t^8.7*y - t^8.77*y + 2*t^8.84*y + t^8.93*y t^2.23/(g1^3*g2^10) + g1^3*g2^9*t^2.7 + t^2.84/(g1^3*g2^15) + t^3. + g2^3*t^3.23 + t^3.62/g2^5 + t^3.85/g2^2 + t^3.92/(g1^3*g2^14) + 2*g2*t^4.08 + t^4.46/(g1^6*g2^20) + t^4.54/(g1^3*g2^19) + t^4.69/g2^4 + g1^3*g2^11*t^4.85 + t^4.92/g2 + t^5./(g1^3*g2^13) + t^5.07/(g1^6*g2^25) + t^5.31/g2^9 + g1^6*g2^18*t^5.39 + t^5.46/(g1^3*g2^7) + t^5.54/g2^6 + t^5.61/(g1^3*g2^18) + t^5.69/(g1^6*g2^30) + g1^3*g2^9*t^5.7 + t^5.77/g2^3 + (2*t^5.84)/(g1^3*g2^15) + t^5.92/(g1^6*g2^27) + g1^3*g2^12*t^5.93 - 2*t^6. + (2*t^6.07)/(g1^3*g2^12) + t^6.15/(g1^6*g2^24) + g2^3*t^6.23 + t^6.3/(g1^3*g2^9) + g1^3*g2^4*t^6.31 + g1^6*g2^30*t^6.31 + t^6.39/g2^8 + t^6.46/(g1^3*g2^20) + g2^6*t^6.46 + g1^3*g2^7*t^6.54 + t^6.62/g2^5 + t^6.68/(g1^9*g2^30) + (2*t^6.69)/(g1^3*g2^17) + (2*t^6.76)/(g1^6*g2^29) + g1^3*g2^10*t^6.77 + t^6.85/g2^2 + (2*t^6.92)/(g1^3*g2^14) + 2*g2*t^7.08 + (2*t^7.15)/(g1^3*g2^11) + t^7.23/(g1^6*g2^23) + (2*t^7.23)/g2^10 + t^7.3/(g1^9*g2^35) + g2^4*t^7.31 + t^7.38/(g1^6*g2^34) - t^7.38/(g1^3*g2^8) + g1^3*g2^5*t^7.39 + (2*t^7.46)/g2^7 - g1^3*g2^19*t^7.46 + (3*t^7.54)/(g1^3*g2^19) + g1^6*g2^20*t^7.54 + t^7.69/(g1^6*g2^17) + (3*t^7.69)/g2^4 + (2*t^7.77)/(g1^3*g2^16) + (2*t^7.84)/(g1^6*g2^28) + t^7.92/(g1^9*g2^40) + (2*t^7.92)/g2 + g1^3*t^8. + (2*t^8.)/(g1^3*g2^13) + t^8.07/(g1^6*g2^25) + g1^9*g2^27*t^8.09 + t^8.15/(g1^9*g2^37) + (2*t^8.15)/(g1^3*g2^24) + 3*g2^2*t^8.15 - (2*t^8.23)/(g1^3*g2^10) + 2*g1^3*g2^3*t^8.23 - g1^6*g2^29*t^8.24 + (2*t^8.3)/(g1^6*g2^22) + (2*t^8.31)/g2^9 + t^8.38/(g1^9*g2^34) + t^8.38/(g1^3*g2^21) - g2^5*t^8.38 + g1^6*g2^18*t^8.39 + (2*t^8.46)/(g1^6*g2^33) + g1^3*g2^6*t^8.46 + t^8.53/(g1^9*g2^45) + t^8.53/(g1^6*g2^19) + (3*t^8.54)/g2^6 + (5*t^8.61)/(g1^3*g2^18) + g1^6*g2^21*t^8.62 + t^8.69/(g1^6*g2^30) + t^8.69/(g1^3*g2^4) - 2*g1^3*g2^9*t^8.7 + t^8.76/(g1^9*g2^42) + (3*t^8.77)/g2^3 - t^8.84/(g1^3*g2^15) + t^8.91/(g1^12*g2^40) + (4*t^8.92)/(g1^6*g2^27) + t^8.92/g2^14 + g1^3*g2^12*t^8.93 + (2*t^8.99)/(g1^9*g2^39) - (g2*t^4.08)/y - (g2^2*t^5.15)/y - t^6.3/(g1^3*g2^9*y) - (g1^3*g2^10*t^6.77)/y - t^6.92/(g1^3*g2^14*y) - (g2^4*t^7.31)/y - t^7.38/(g1^3*g2^8*y) - t^7.69/(g2^4*y) + t^7.92/(g2*y) - t^8./(g1^3*g2^13*y) + t^8.07/(g1^6*g2^25*y) - (2*g2^2*t^8.15)/y + t^8.23/(g1^3*g2^10*y) - (g2^5*t^8.38)/y + t^8.46/(g1^3*g2^7*y) - t^8.53/(g1^6*g2^19*y) + t^8.54/(g2^6*y) + (g1^3*g2^9*t^8.7)/y - t^8.77/(g2^3*y) + (2*t^8.84)/(g1^3*g2^15*y) + (g1^3*g2^12*t^8.93)/y - g2*t^4.08*y - g2^2*t^5.15*y - (t^6.3*y)/(g1^3*g2^9) - g1^3*g2^10*t^6.77*y - (t^6.92*y)/(g1^3*g2^14) - g2^4*t^7.31*y - (t^7.38*y)/(g1^3*g2^8) - (t^7.69*y)/g2^4 + (t^7.92*y)/g2 - (t^8.*y)/(g1^3*g2^13) + (t^8.07*y)/(g1^6*g2^25) - 2*g2^2*t^8.15*y + (t^8.23*y)/(g1^3*g2^10) - g2^5*t^8.38*y + (t^8.46*y)/(g1^3*g2^7) - (t^8.53*y)/(g1^6*g2^19) + (t^8.54*y)/g2^6 + g1^3*g2^9*t^8.7*y - (t^8.77*y)/g2^3 + (2*t^8.84*y)/(g1^3*g2^15) + g1^3*g2^12*t^8.93*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57576 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4843 1.7053 0.8704 [X:[1.3536], M:[0.6707, 0.6707], q:[0.5752, 0.5264], qb:[0.4796, 0.4796], phi:[0.3232]] 2*t^2.01 + t^2.91 + 2*t^3.02 + 2*t^3.16 + 3*t^4.02 + t^4.06 + 2*t^4.13 + 2*t^4.92 + 2*t^4.96 + 4*t^5.03 + 2*t^5.1 + 4*t^5.18 + 2*t^5.29 + t^5.82 + 2*t^5.93 - 5*t^6. - t^3.97/y - t^4.94/y - (2*t^5.98)/y - t^3.97*y - t^4.94*y - 2*t^5.98*y detail