Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47921 SU3adj1nf2 $\phi_1q_1^2q_2$ + $ \phi_1^2X_1$ + $ M_1\phi_1q_2\tilde{q}_1$ 1.4635 1.664 0.8795 [X:[1.3534], M:[0.671], q:[0.5755, 0.5258], qb:[0.4799, 0.479], phi:[0.3233]] [X:[[0, 0, 2]], M:[[1, 2, -10]], q:[[1, 1, -5], [-2, -2, 11]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_1^2$, $ X_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_1\phi_1^3$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ M_1q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ M_1q_1\tilde{q}_1$, $ M_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1^6$, $ \phi_1^3q_2\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_1$ . -4 t^2.01 + t^2.91 + t^3.01 + t^3.02 + t^3.16 + t^3.17 + t^3.98 + t^4.03 + t^4.06 + t^4.13 + t^4.14 + t^4.92 + t^4.95 + t^4.96 + 2*t^5.03 + t^5.1 + t^5.11 + 2*t^5.18 + t^5.28 + t^5.29 + t^5.82 + t^5.92 + t^5.93 - 4*t^6. + 3*t^6.03 + t^6.04 + 2*t^6.07 + t^6.08 + t^6.15 + 4*t^6.18 + t^6.25 + t^6.26 + 3*t^6.33 + t^6.89 + t^6.94 - t^6.97 + 2*t^7. + 3*t^7.04 + t^7.05 + t^7.07 + t^7.08 + t^7.12 + 5*t^7.15 + 2*t^7.19 + 3*t^7.22 + 3*t^7.23 + 5*t^7.3 + t^7.64 + t^7.83 - t^7.94 + 5*t^7.97 - 2*t^8.01 + 2*t^8.04 + t^8.05 + 3*t^8.09 + 6*t^8.12 + t^8.16 + 4*t^8.19 + 2*t^8.2 + 5*t^8.27 + 4*t^8.3 + 2*t^8.34 + t^8.35 + 4*t^8.45 - t^8.68 - t^8.69 + t^8.73 - 3*t^8.91 + 5*t^8.94 + t^8.95 - t^8.98 + t^8.91/y^2 - t^8.98/y^2 - t^3.97/y - t^4.94/y - t^5.98/y - t^6.88/y - t^6.95/y - t^6.98/y - t^6.99/y - t^7.13/y - t^7.14/y - t^7.85/y + t^7.92/y - t^7.95/y - t^8./y + (2*t^8.03)/y - t^8.1/y - t^8.11/y + (2*t^8.18)/y - t^8.89/y + t^8.93/y - t^8.97/y - t^3.97*y - t^4.94*y - t^5.98*y - t^6.88*y - t^6.95*y - t^6.98*y - t^6.99*y - t^7.13*y - t^7.14*y - t^7.85*y + t^7.92*y - t^7.95*y - t^8.*y + 2*t^8.03*y - t^8.1*y - t^8.11*y + 2*t^8.18*y - t^8.89*y + t^8.93*y - t^8.97*y + t^8.91*y^2 - t^8.98*y^2 (g1*g2^2*t^2.01)/g3^10 + t^2.91/g3^3 + (g3^11*t^3.01)/(g1^2*g2) + (g3^11*t^3.02)/(g1*g2^2) + (g1*g2^2*t^3.16)/g3^5 + (g1^2*g2*t^3.17)/g3^5 + (g3^10*t^3.98)/(g1^2*g2) + (g1^2*g2^4*t^4.03)/g3^20 + g3^2*t^4.06 + (g1*g2^2*t^4.13)/g3^6 + (g1^2*g2*t^4.14)/g3^6 + (g1*g2^2*t^4.92)/g3^13 + (g3^9*t^4.95)/(g1^2*g2) + (g3^9*t^4.96)/(g1*g2^2) + g3*t^5.03 + (g2*g3*t^5.03)/g1 + (g1*g2^2*t^5.1)/g3^7 + (g1^2*g2*t^5.11)/g3^7 + (g1^3*g2^3*t^5.18)/g3^15 + (g1^2*g2^4*t^5.18)/g3^15 + (g1*g2^2*t^5.28)/g3 + (g1^2*g2*t^5.29)/g3 + t^5.82/g3^6 + (g3^8*t^5.92)/(g1^2*g2) + (g3^8*t^5.93)/(g1*g2^2) - 3*t^6. - (g1*t^6.)/g2 + (g3^22*t^6.03)/(g1^2*g2^4) + (g3^22*t^6.03)/(g1^3*g2^3) + (g3^22*t^6.03)/(g1^4*g2^2) + (g1^3*g2^6*t^6.04)/g3^30 + (2*g1*g2^2*t^6.07)/g3^8 + (g1^2*g2*t^6.08)/g3^8 + (g1^2*g2^4*t^6.15)/g3^16 + 2*g3^6*t^6.18 + (g1*g3^6*t^6.18)/g2 + (g2*g3^6*t^6.18)/g1 + (g1*g2^2*t^6.25)/g3^2 + (g1^2*g2*t^6.26)/g3^2 + (g1^4*g2^2*t^6.33)/g3^10 + (g1^3*g2^3*t^6.33)/g3^10 + (g1^2*g2^4*t^6.33)/g3^10 + (g3^7*t^6.89)/(g1^2*g2) + (g1^2*g2^4*t^6.94)/g3^23 - (g1*t^6.97)/(g2*g3) + (g3^21*t^7.)/(g1^3*g2^3) + (g3^21*t^7.)/(g1^4*g2^2) + (2*g1*g2^2*t^7.04)/g3^9 + (g2^3*t^7.04)/g3^9 + (g1^2*g2*t^7.05)/g3^9 + (g3^13*t^7.07)/(g1^2*g2) + (g3^13*t^7.08)/(g1*g2^2) + (g1^2*g2^4*t^7.12)/g3^17 + 2*g3^5*t^7.15 + (g1*g3^5*t^7.15)/g2 + (2*g2*g3^5*t^7.15)/g1 + (g1^4*g2^5*t^7.19)/g3^25 + (g1^3*g2^6*t^7.19)/g3^25 + (2*g1*g2^2*t^7.22)/g3^3 + (g2^3*t^7.22)/g3^3 + (g1^3*t^7.23)/g3^3 + (2*g1^2*g2*t^7.23)/g3^3 + (g1^4*g2^2*t^7.3)/g3^11 + (2*g1^3*g2^3*t^7.3)/g3^11 + (2*g1^2*g2^4*t^7.3)/g3^11 + (g3^30*t^7.64)/(g1^6*g2^6) + (g1*g2^2*t^7.83)/g3^16 - (g1*t^7.94)/(g2*g3^2) + (g3^20*t^7.97)/(g1^2*g2^4) + (2*g3^20*t^7.97)/(g1^3*g2^3) + (2*g3^20*t^7.97)/(g1^4*g2^2) - (2*g1*g2^2*t^8.01)/g3^10 + (g3^12*t^8.04)/g1^3 + (g3^12*t^8.04)/(g1^2*g2) + (g1^4*g2^8*t^8.05)/g3^40 + (g1^3*g2^3*t^8.09)/g3^18 + (2*g1^2*g2^4*t^8.09)/g3^18 + 3*g3^4*t^8.12 + (g1*g3^4*t^8.12)/g2 + (2*g2*g3^4*t^8.12)/g1 + (g1^3*g2^6*t^8.16)/g3^26 + (3*g1*g2^2*t^8.19)/g3^4 + (g2^3*t^8.19)/g3^4 + (2*g1^2*g2*t^8.2)/g3^4 + (g1^4*g2^2*t^8.27)/g3^12 + (2*g1^3*g2^3*t^8.27)/g3^12 + (2*g1^2*g2^4*t^8.27)/g3^12 + 2*g3^10*t^8.3 + (g1*g3^10*t^8.3)/g2 + (g2*g3^10*t^8.3)/g1 + (g1^4*g2^5*t^8.34)/g3^20 + (g1^3*g2^6*t^8.34)/g3^20 + (g1^5*g2^4*t^8.35)/g3^20 + (g1^4*g2^2*t^8.45)/g3^6 + (2*g1^3*g2^3*t^8.45)/g3^6 + (g1^2*g2^4*t^8.45)/g3^6 - (g3^21*t^8.68)/(g1^5*g2^4) - (g3^21*t^8.69)/(g1^4*g2^5) + t^8.73/g3^9 - (2*t^8.91)/g3^3 - (g1*t^8.91)/(g2*g3^3) + (g3^19*t^8.94)/(g1^2*g2^4) + (2*g3^19*t^8.94)/(g1^3*g2^3) + (2*g3^19*t^8.94)/(g1^4*g2^2) + (g1^3*g2^6*t^8.95)/g3^33 - (g1*g2^2*t^8.98)/g3^11 + t^8.91/(g3^3*y^2) - (g1*g2^2*t^8.98)/(g3^11*y^2) - t^3.97/(g3*y) - t^4.94/(g3^2*y) - (g1*g2^2*t^5.98)/(g3^11*y) - t^6.88/(g3^4*y) - (g1*g2^2*t^6.95)/(g3^12*y) - (g3^10*t^6.98)/(g1^2*g2*y) - (g3^10*t^6.99)/(g1*g2^2*y) - (g1*g2^2*t^7.13)/(g3^6*y) - (g1^2*g2*t^7.14)/(g3^6*y) - t^7.85/(g3^5*y) + (g1*g2^2*t^7.92)/(g3^13*y) - (g3^9*t^7.95)/(g1^2*g2*y) - (g1^2*g2^4*t^8.)/(g3^21*y) + (g3*t^8.03)/y + (g2*g3*t^8.03)/(g1*y) - (g1*g2^2*t^8.1)/(g3^7*y) - (g1^2*g2*t^8.11)/(g3^7*y) + (g1^3*g2^3*t^8.18)/(g3^15*y) + (g1^2*g2^4*t^8.18)/(g3^15*y) - (g1*g2^2*t^8.89)/(g3^14*y) + (g3^8*t^8.93)/(g1*g2^2*y) - (g1^2*g2^4*t^8.97)/(g3^22*y) - (t^3.97*y)/g3 - (t^4.94*y)/g3^2 - (g1*g2^2*t^5.98*y)/g3^11 - (t^6.88*y)/g3^4 - (g1*g2^2*t^6.95*y)/g3^12 - (g3^10*t^6.98*y)/(g1^2*g2) - (g3^10*t^6.99*y)/(g1*g2^2) - (g1*g2^2*t^7.13*y)/g3^6 - (g1^2*g2*t^7.14*y)/g3^6 - (t^7.85*y)/g3^5 + (g1*g2^2*t^7.92*y)/g3^13 - (g3^9*t^7.95*y)/(g1^2*g2) - (g1^2*g2^4*t^8.*y)/g3^21 + g3*t^8.03*y + (g2*g3*t^8.03*y)/g1 - (g1*g2^2*t^8.1*y)/g3^7 - (g1^2*g2*t^8.11*y)/g3^7 + (g1^3*g2^3*t^8.18*y)/g3^15 + (g1^2*g2^4*t^8.18*y)/g3^15 - (g1*g2^2*t^8.89*y)/g3^14 + (g3^8*t^8.93*y)/(g1*g2^2) - (g1^2*g2^4*t^8.97*y)/g3^22 + (t^8.91*y^2)/g3^3 - (g1*g2^2*t^8.98*y^2)/g3^11


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47876 SU3adj1nf2 $\phi_1q_1^2q_2$ + $ \phi_1^2X_1$ 1.4426 1.6227 0.889 [X:[1.353], M:[], q:[0.5758, 0.525], qb:[0.4792, 0.4792], phi:[0.3235]] t^2.91 + 2*t^3.01 + 2*t^3.16 + 2*t^3.98 + t^4.06 + 2*t^4.14 + 2*t^4.95 + 2*t^5.11 + 2*t^5.28 + t^5.82 + 2*t^5.92 - 5*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y detail