Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59420 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{2}\tilde{q}_{2}X_{3}$ 1.2267 1.4068 0.872 [X:[1.2237, 1.3882, 1.3882], M:[1.0, 1.0], q:[0.6864, 0.2391], qb:[0.3728, 0.3728], phi:[0.3882]] [X:[[-6, -6], [6, 0], [0, 6]], M:[[3, -3], [-3, 3]], q:[[-5, -5], [7, 7]], qb:[[-13, -7], [-7, -13]], phi:[[3, 3]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}M_{1}^{2}$, ${ }M_{2}^{2}$ -2 2*t^3. + 2*t^3.18 + t^3.49 + t^3.67 + 4*t^4.16 + 2*t^4.34 + 2*t^4.52 + 2*t^5.51 + t^5.65 + 2*t^5.68 - 2*t^6. + 3*t^6.18 + 3*t^6.35 + 2*t^6.49 + 2*t^6.67 + 6*t^6.85 + t^6.99 + 5*t^7.16 + 7*t^7.34 - 2*t^7.48 + 6*t^7.52 + 2*t^7.66 + 4*t^7.7 + 4*t^7.84 + 2*t^8.01 - t^8.15 + 6*t^8.33 + 6*t^8.51 + 11*t^8.68 - 2*t^8.82 + 7*t^8.86 - t^4.16/y - t^5.33/y - (2*t^7.34)/y - t^7.66/y - (4*t^8.33)/y - (2*t^8.51)/y - t^4.16*y - t^5.33*y - 2*t^7.34*y - t^7.66*y - 4*t^8.33*y - 2*t^8.51*y (g1^3*t^3.)/g2^3 + (g2^3*t^3.)/g1^3 + t^3.18/(g1^12*g2^18) + t^3.18/(g1^18*g2^12) + g1^9*g2^9*t^3.49 + t^3.67/(g1^6*g2^6) + 2*g1^6*t^4.16 + 2*g2^6*t^4.16 + t^4.34/(g1^9*g2^15) + t^4.34/(g1^15*g2^9) + t^4.52/(g1^24*g2^30) + t^4.52/(g1^30*g2^24) + t^5.51/(g1^6*g2^12) + t^5.51/(g1^12*g2^6) + g1^30*g2^30*t^5.65 + t^5.68/(g1^21*g2^27) + t^5.68/(g1^27*g2^21) - 2*t^6. + t^6.18/(g1^9*g2^21) + t^6.18/(g1^15*g2^15) + t^6.18/(g1^21*g2^9) + t^6.35/(g1^24*g2^36) + t^6.35/(g1^30*g2^30) + t^6.35/(g1^36*g2^24) + g1^12*g2^6*t^6.49 + g1^6*g2^12*t^6.49 + t^6.67/(g1^3*g2^9) + t^6.67/(g1^9*g2^3) + t^6.85/(g1^12*g2^30) + (2*t^6.85)/(g1^18*g2^24) + (2*t^6.85)/(g1^24*g2^18) + t^6.85/(g1^30*g2^12) + g1^18*g2^18*t^6.99 + (g1^9*t^7.16)/g2^3 + 3*g1^3*g2^3*t^7.16 + (g2^9*t^7.16)/g1^3 + (2*t^7.34)/(g1^6*g2^18) + (3*t^7.34)/(g1^12*g2^12) + (2*t^7.34)/(g1^18*g2^6) - g1^30*g2^24*t^7.48 - g1^24*g2^30*t^7.48 + (2*t^7.52)/(g1^21*g2^33) + (2*t^7.52)/(g1^27*g2^27) + (2*t^7.52)/(g1^33*g2^21) + g1^15*g2^9*t^7.66 + g1^9*g2^15*t^7.66 + t^7.7/(g1^36*g2^48) + (2*t^7.7)/(g1^42*g2^42) + t^7.7/(g1^48*g2^36) + (2*t^7.84)/g1^6 + (2*t^7.84)/g2^6 + t^8.01/(g1^15*g2^21) + t^8.01/(g1^21*g2^15) - g1^21*g2^21*t^8.15 + 2*g1^12*t^8.33 + 2*g1^6*g2^6*t^8.33 + 2*g2^12*t^8.33 + (2*t^8.51)/(g1^3*g2^15) + (2*t^8.51)/(g1^9*g2^9) + (2*t^8.51)/(g1^15*g2^3) + (3*t^8.68)/(g1^18*g2^30) + (5*t^8.68)/(g1^24*g2^24) + (3*t^8.68)/(g1^30*g2^18) - g1^18*g2^12*t^8.82 - g1^12*g2^18*t^8.82 + (2*t^8.86)/(g1^33*g2^45) + (3*t^8.86)/(g1^39*g2^39) + (2*t^8.86)/(g1^45*g2^33) - (g1^3*g2^3*t^4.16)/y - (g1^6*g2^6*t^5.33)/y - t^7.34/(g1^9*g2^15*y) - t^7.34/(g1^15*g2^9*y) - (g1^12*g2^12*t^7.66)/y - (2*g1^9*g2^3*t^8.33)/y - (2*g1^3*g2^9*t^8.33)/y - t^8.51/(g1^6*g2^12*y) - t^8.51/(g1^12*g2^6*y) - g1^3*g2^3*t^4.16*y - g1^6*g2^6*t^5.33*y - (t^7.34*y)/(g1^9*g2^15) - (t^7.34*y)/(g1^15*g2^9) - g1^12*g2^12*t^7.66*y - 2*g1^9*g2^3*t^8.33*y - 2*g1^3*g2^9*t^8.33*y - (t^8.51*y)/(g1^6*g2^12) - (t^8.51*y)/(g1^12*g2^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61255 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{2}\tilde{q}_{2}X_{3}$ + ${ }M_{3}\phi_{1}^{3}$ 1.2411 1.4331 0.866 [X:[1.2196, 1.3902, 1.3902], M:[1.0, 1.0, 0.8294], q:[0.683, 0.2438], qb:[0.366, 0.366], phi:[0.3902]] t^2.49 + 2*t^3. + 2*t^3.15 + t^3.66 + 4*t^4.17 + 2*t^4.32 + 2*t^4.46 + t^4.98 + 4*t^5.49 + 4*t^5.63 + t^5.71 - 2*t^6. - t^4.17/y - t^5.34/y - t^4.17*y - t^5.34*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57576 SU3adj1nf2 ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4843 1.7053 0.8704 [X:[1.3536], M:[0.6707, 0.6707], q:[0.5752, 0.5264], qb:[0.4796, 0.4796], phi:[0.3232]] 2*t^2.01 + t^2.91 + 2*t^3.02 + 2*t^3.16 + 3*t^4.02 + t^4.06 + 2*t^4.13 + 2*t^4.92 + 2*t^4.96 + 4*t^5.03 + 2*t^5.1 + 4*t^5.18 + 2*t^5.29 + t^5.82 + 2*t^5.93 - 5*t^6. - t^3.97/y - t^4.94/y - (2*t^5.98)/y - t^3.97*y - t^4.94*y - 2*t^5.98*y detail