Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60717 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4958 | 1.7267 | 0.8663 | [X:[], M:[0.9893, 0.9948, 0.6897], q:[0.5107, 0.4789], qb:[0.4945, 0.4945], phi:[0.3369]] | [X:[], M:[[3, 3, 3], [-6, 0, -3], [1, -5, -2]], q:[[6, 0, 0], [0, 6, 0]], qb:[[0, 0, 3], [0, 0, 3]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$ | ${}$ | -4 | t^2.02 + t^2.07 + 2*t^2.92 + t^2.97 + t^2.98 + t^3.02 + t^3.93 + 2*t^4.03 + t^4.04 + t^4.09 + t^4.14 + 4*t^4.94 + 3*t^4.99 + t^5.01 + 4*t^5.04 + t^5.05 + t^5.08 + t^5.42 + 2*t^5.46 + t^5.51 + 3*t^5.84 + 2*t^5.89 + t^5.9 + 3*t^5.94 + 2*t^5.95 + t^5.97 + t^5.98 - 4*t^6. + t^6.03 + 2*t^6.05 + t^6.06 + t^6.1 + t^6.11 + t^6.16 + t^6.21 + t^6.43 + 2*t^6.47 + t^6.52 + 2*t^6.85 + t^6.9 + 5*t^6.95 + 4*t^6.96 + 2*t^6.99 + 2*t^7.01 + t^7.03 + 2*t^7.04 + 6*t^7.06 + t^7.07 + 3*t^7.11 + t^7.12 + t^7.15 + t^7.34 + t^7.44 + 6*t^7.48 - t^7.49 + 3*t^7.53 + t^7.58 + t^7.63 + 8*t^7.86 + 5*t^7.91 + 2*t^7.93 + 12*t^7.96 + 3*t^7.97 + t^7.99 + 4*t^8. - 5*t^8.02 + t^8.04 + 7*t^8.05 - 2*t^8.07 + t^8.09 + t^8.1 + t^8.13 + t^8.16 + t^8.18 + t^8.23 + t^8.28 + 2*t^8.34 + 5*t^8.38 - t^8.4 + 5*t^8.43 - t^8.45 + 3*t^8.48 + 2*t^8.49 - 2*t^8.5 + t^8.53 - t^8.54 - t^8.59 + 4*t^8.76 + 3*t^8.81 + t^8.83 + 5*t^8.86 + 5*t^8.87 + t^8.89 + 3*t^8.9 - 9*t^8.92 + t^8.94 + 4*t^8.95 + 6*t^8.97 + t^8.98 - t^4.01/y - t^5.02/y - t^6.03/y - t^6.08/y - (2*t^6.93)/y - t^6.98/y - t^7./y - t^7.03/y - t^7.04/y + t^7.94/y + (3*t^7.99)/y + t^8.04/y + t^8.08/y - t^8.1/y - t^8.15/y + t^8.84/y + (2*t^8.89)/y + (2*t^8.9)/y + (2*t^8.94)/y - t^8.95/y + t^8.98/y - t^4.01*y - t^5.02*y - t^6.03*y - t^6.08*y - 2*t^6.93*y - t^6.98*y - t^7.*y - t^7.03*y - t^7.04*y + t^7.94*y + 3*t^7.99*y + t^8.04*y + t^8.08*y - t^8.1*y - t^8.15*y + t^8.84*y + 2*t^8.89*y + 2*t^8.9*y + 2*t^8.94*y - t^8.95*y + t^8.98*y | t^2.02/(g1^2*g2^2*g3^2) + (g1*t^2.07)/(g2^5*g3^2) + 2*g2^6*g3^3*t^2.92 + g1^3*g2^3*g3^3*t^2.97 + t^2.98/(g1^6*g3^3) + g1^6*g3^3*t^3.02 + (g2^5*g3^2*t^3.93)/g1 + (2*g1^5*g3^2*t^4.03)/g2 + t^4.04/(g1^4*g2^4*g3^4) + t^4.09/(g1*g2^7*g3^4) + (g1^2*t^4.14)/(g2^10*g3^4) + (4*g2^4*g3*t^4.94)/g1^2 + 3*g1*g2*g3*t^4.99 + t^5.01/(g1^8*g2^2*g3^5) + (4*g1^4*g3*t^5.04)/g2^2 + t^5.05/(g1^5*g2^5*g3^5) + (g1^7*g3*t^5.08)/g2^5 + (g1^5*g2^11*t^5.42)/g3 + (2*g3^8*t^5.46)/(g1*g2) + (g1^11*g2^5*t^5.51)/g3 + 3*g2^12*g3^6*t^5.84 + 2*g1^3*g2^9*g3^6*t^5.89 + (g2^6*t^5.9)/g1^6 + 3*g1^6*g2^6*g3^6*t^5.94 + (2*g2^3*t^5.95)/g1^3 + t^5.97/(g1^12*g3^6) + g1^9*g2^3*g3^6*t^5.98 - 4*t^6. + g1^12*g3^6*t^6.03 + (2*g1^3*t^6.05)/g2^3 + t^6.06/(g1^6*g2^6*g3^6) + (g1^6*t^6.1)/g2^6 + t^6.11/(g1^3*g2^9*g3^6) + t^6.16/(g2^12*g3^6) + (g1^3*t^6.21)/(g2^15*g3^6) + (g1^4*g2^10*t^6.43)/g3^2 + (2*g3^7*t^6.47)/(g1^2*g2^2) + (g1^10*g2^4*t^6.52)/g3^2 + (2*g2^11*g3^5*t^6.85)/g1 + g1^2*g2^8*g3^5*t^6.9 + 5*g1^5*g2^5*g3^5*t^6.95 + (4*g2^2*t^6.96)/(g1^4*g3) + 2*g1^8*g2^2*g3^5*t^6.99 + (2*t^7.01)/(g1*g2*g3) + t^7.03/(g1^10*g2^4*g3^7) + (2*g1^11*g3^5*t^7.04)/g2 + (6*g1^2*t^7.06)/(g2^4*g3) + t^7.07/(g1^7*g2^7*g3^7) + (3*g1^5*t^7.11)/(g2^7*g3) + t^7.12/(g1^4*g2^10*g3^7) + (g1^8*t^7.15)/(g2^10*g3) + (g2^15*t^7.34)/(g1^3*g3^3) + (2*g1^3*g2^9*t^7.44)/g3^3 - (g3^6*t^7.44)/g1^6 + (6*g3^6*t^7.48)/(g1^3*g2^3) - (g1^6*g2^6*t^7.49)/g3^3 + (2*g1^9*g2^3*t^7.53)/g3^3 + (g3^6*t^7.53)/g2^6 + (g1^12*t^7.58)/g3^3 + (g1^15*t^7.63)/(g2^3*g3^3) + (8*g2^10*g3^4*t^7.86)/g1^2 + 5*g1*g2^7*g3^4*t^7.91 + (2*g2^4*t^7.93)/(g1^8*g3^2) + 12*g1^4*g2^4*g3^4*t^7.96 + (3*g2*t^7.97)/(g1^5*g3^2) + t^7.99/(g1^14*g2^2*g3^8) + 4*g1^7*g2*g3^4*t^8. - (5*t^8.02)/(g1^2*g2^2*g3^2) + t^8.04/(g1^11*g2^5*g3^8) + (7*g1^10*g3^4*t^8.05)/g2^2 - (2*g1*t^8.07)/(g2^5*g3^2) + t^8.09/(g1^8*g2^8*g3^8) + (g1^13*g3^4*t^8.1)/g2^5 + t^8.13/(g1^5*g2^11*g3^8) + (g1^7*t^8.16)/(g2^11*g3^2) + t^8.18/(g1^2*g2^14*g3^8) + (g1*t^8.23)/(g2^17*g3^8) + (g1^4*t^8.28)/(g2^20*g3^8) + 2*g1^5*g2^17*g3^2*t^8.34 + g1^8*g2^14*g3^2*t^8.38 + (4*g2^5*g3^11*t^8.38)/g1 - (g2^11*t^8.4)/(g1*g3^4) + 3*g1^11*g2^11*g3^2*t^8.43 + 2*g1^2*g2^2*g3^11*t^8.43 + (g1^2*g2^8*t^8.45)/g3^4 - (2*g3^5*t^8.45)/(g1^7*g2) + g1^14*g2^8*g3^2*t^8.48 + (2*g1^5*g3^11*t^8.48)/g2 + (2*g3^5*t^8.49)/(g1^4*g2^4) - (2*g1^5*g2^5*t^8.5)/g3^4 + g1^17*g2^5*g3^2*t^8.53 + (g1^8*g2^2*t^8.54)/g3^4 - (2*g3^5*t^8.54)/(g1*g2^7) - (g1^11*t^8.59)/(g2*g3^4) + 4*g2^18*g3^9*t^8.76 + 3*g1^3*g2^15*g3^9*t^8.81 + (g2^12*g3^3*t^8.83)/g1^6 + 5*g1^6*g2^12*g3^9*t^8.86 + (5*g2^9*g3^3*t^8.87)/g1^3 + (g2^6*t^8.89)/(g1^12*g3^3) + 3*g1^9*g2^9*g3^9*t^8.9 - 9*g2^6*g3^3*t^8.92 + (g2^3*t^8.94)/(g1^9*g3^3) + t^8.95/(g1^18*g3^9) + 3*g1^12*g2^6*g3^9*t^8.95 + 6*g1^3*g2^3*g3^3*t^8.97 + t^8.98/(g1^6*g3^3) - t^4.01/(g1*g2*g3*y) - t^5.02/(g1^2*g2^2*g3^2*y) - t^6.03/(g1^3*g2^3*g3^3*y) - t^6.08/(g2^6*g3^3*y) - (2*g2^5*g3^2*t^6.93)/(g1*y) - (g1^2*g2^2*g3^2*t^6.98)/y - t^7./(g1^7*g2*g3^4*y) - (g1^5*g3^2*t^7.03)/(g2*y) - t^7.04/(g1^4*g2^4*g3^4*y) + (g2^4*g3*t^7.94)/(g1^2*y) + (3*g1*g2*g3*t^7.99)/y + (g1^4*g3*t^8.04)/(g2^2*y) + (g1^7*g3*t^8.08)/(g2^5*y) - t^8.1/(g1^2*g2^8*g3^5*y) - (g1*t^8.15)/(g2^11*g3^5*y) + (g2^12*g3^6*t^8.84)/y + (2*g1^3*g2^9*g3^6*t^8.89)/y + (2*g2^6*t^8.9)/(g1^6*y) + (2*g1^6*g2^6*g3^6*t^8.94)/y - (g2^3*t^8.95)/(g1^3*y) + (g1^9*g2^3*g3^6*t^8.98)/y - (t^4.01*y)/(g1*g2*g3) - (t^5.02*y)/(g1^2*g2^2*g3^2) - (t^6.03*y)/(g1^3*g2^3*g3^3) - (t^6.08*y)/(g2^6*g3^3) - (2*g2^5*g3^2*t^6.93*y)/g1 - g1^2*g2^2*g3^2*t^6.98*y - (t^7.*y)/(g1^7*g2*g3^4) - (g1^5*g3^2*t^7.03*y)/g2 - (t^7.04*y)/(g1^4*g2^4*g3^4) + (g2^4*g3*t^7.94*y)/g1^2 + 3*g1*g2*g3*t^7.99*y + (g1^4*g3*t^8.04*y)/g2^2 + (g1^7*g3*t^8.08*y)/g2^5 - (t^8.1*y)/(g1^2*g2^8*g3^5) - (g1*t^8.15*y)/(g2^11*g3^5) + g2^12*g3^6*t^8.84*y + 2*g1^3*g2^9*g3^6*t^8.89*y + (2*g2^6*t^8.9*y)/g1^6 + 2*g1^6*g2^6*g3^6*t^8.94*y - (g2^3*t^8.95*y)/g1^3 + g1^9*g2^3*g3^6*t^8.98*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
60957 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.5165 | 1.7667 | 0.8584 | [X:[], M:[0.991, 0.9949, 0.6867, 0.6867], q:[0.5097, 0.4815], qb:[0.4954, 0.4954], phi:[0.3363]] | t^2.02 + 2*t^2.06 + 2*t^2.93 + t^2.97 + t^2.98 + t^3.02 + 2*t^4.02 + t^4.04 + 2*t^4.08 + 3*t^4.12 + 4*t^4.95 + 5*t^4.99 + t^5. + 5*t^5.03 + 2*t^5.04 + 2*t^5.08 + t^5.43 + 2*t^5.47 + t^5.51 + 3*t^5.86 + 2*t^5.9 + t^5.92 + 3*t^5.95 + t^5.96 + t^5.97 + t^5.99 - 5*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57481 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4968 | 1.7304 | 0.865 | [X:[], M:[0.9878, 0.9758, 0.6733], q:[0.5114, 0.4764], qb:[0.5129, 0.475], phi:[0.3374]] | 2*t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.87 + t^3.97 + 2*t^4.04 + t^4.05 + t^4.08 + t^4.87 + 2*t^4.88 + 2*t^4.95 + 4*t^4.98 + 4*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + t^5.81 + 2*t^5.82 + t^5.85 + 3*t^5.89 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |