Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60077 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5176 1.7713 0.8568 [X:[], M:[0.9887, 0.9749, 0.6742, 0.6742], q:[0.5126, 0.4761], qb:[0.5126, 0.4761], phi:[0.3371]] [X:[], M:[[3, 3, 3, 3], [-6, 0, -6, 0], [1, -5, -5, 1], [-5, 1, 1, -5]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -4 3*t^2.02 + t^2.86 + t^2.92 + 3*t^2.97 + t^3.87 + 6*t^4.05 + t^4.09 + 4*t^4.88 + 3*t^4.95 + 11*t^4.99 + t^5.1 + 2*t^5.41 + 2*t^5.52 + t^5.71 + t^5.78 + 3*t^5.82 + t^5.85 + 4*t^5.89 + 6*t^5.93 - 4*t^6. + 10*t^6.07 + t^6.11 + 2*t^6.42 + 2*t^6.53 + t^6.73 + t^6.79 + 3*t^6.83 + 7*t^6.9 + t^6.94 + 6*t^6.97 + 22*t^7.01 + 3*t^7.05 + t^7.12 + 2*t^7.32 + 6*t^7.43 + 6*t^7.54 + 2*t^7.65 + 5*t^7.74 + 4*t^7.8 + 13*t^7.85 + 3*t^7.87 + 9*t^7.91 + 23*t^7.95 - 13*t^8.02 + 2*t^8.06 + 15*t^8.09 - 2*t^8.13 + t^8.17 + 2*t^8.26 + 8*t^8.37 + 2*t^8.44 + 6*t^8.48 + t^8.57 + t^8.64 - 2*t^8.66 + 3*t^8.68 + t^8.71 + 5*t^8.75 + t^8.77 + 6*t^8.79 + 4*t^8.82 + 6*t^8.86 + 10*t^8.9 + 7*t^8.92 - 12*t^8.97 + 10*t^8.99 - t^4.01/y - t^5.02/y - (3*t^6.03)/y - t^6.87/y - t^6.94/y - (3*t^6.98)/y + (2*t^7.88)/y + (2*t^7.95)/y + (9*t^7.99)/y - (6*t^8.06)/y + t^8.78/y + (3*t^8.82)/y + (2*t^8.89)/y + (3*t^8.93)/y - (3*t^8.96)/y - t^4.01*y - t^5.02*y - 3*t^6.03*y - t^6.87*y - t^6.94*y - 3*t^6.98*y + 2*t^7.88*y + 2*t^7.95*y + 9*t^7.99*y - 6*t^8.06*y + t^8.78*y + 3*t^8.82*y + 2*t^8.89*y + 3*t^8.93*y - 3*t^8.96*y (g2*g3*t^2.02)/(g1^5*g4^5) + t^2.02/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^2.02)/(g2^5*g3^5) + g2^6*g4^6*t^2.86 + t^2.92/(g1^6*g3^6) + g2^6*g3^6*t^2.97 + g1^3*g2^3*g3^3*g4^3*t^2.97 + g1^6*g4^6*t^2.97 + (g2^5*g4^5*t^3.87)/(g1*g3) + (g2^2*g3^2*t^4.05)/(g1^10*g4^10) + t^4.05/(g1^7*g2*g3*g4^7) + (2*t^4.05)/(g1^4*g2^4*g3^4*g4^4) + t^4.05/(g1*g2^7*g3^7*g4) + (g1^2*g4^2*t^4.05)/(g2^10*g3^10) + (g1^5*g3^5*t^4.09)/(g2*g4) + (g2^7*g3*g4*t^4.88)/g1^5 + (2*g2^4*g4^4*t^4.88)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.88)/g3^5 + (g2*t^4.95)/(g1^11*g3^5*g4^5) + t^4.95/(g1^8*g2^2*g3^8*g4^2) + (g4*t^4.95)/(g1^5*g2^5*g3^11) + (g2^7*g3^7*t^4.99)/(g1^5*g4^5) + (3*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + 3*g1*g2*g3*g4*t^4.99 + (3*g1^4*g4^4*t^4.99)/(g2^2*g3^2) + (g1^7*g4^7*t^4.99)/(g2^5*g3^5) + (g1^4*g3^4*t^5.1)/(g2^2*g4^2) + (g1^5*g2^11*t^5.41)/(g3*g4) + (g3^5*g4^11*t^5.41)/(g1*g2) + (g1^11*g2^5*t^5.52)/(g3*g4) + (g3^11*g4^5*t^5.52)/(g1*g2) + g2^12*g4^12*t^5.71 + (g2^6*g4^6*t^5.78)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^5.82 + g1^3*g2^9*g3^3*g4^9*t^5.82 + g1^6*g2^6*g4^12*t^5.82 + t^5.85/(g1^12*g3^12) + (g2^6*t^5.89)/g1^6 + (2*g2^3*g4^3*t^5.89)/(g1^3*g3^3) + (g4^6*t^5.89)/g3^6 + g2^12*g3^12*t^5.93 + g1^3*g2^9*g3^9*g4^3*t^5.93 + 2*g1^6*g2^6*g3^6*g4^6*t^5.93 + g1^9*g2^3*g3^3*g4^9*t^5.93 + g1^12*g4^12*t^5.93 - 4*t^6. + t^6.07/(g2^12*g3^12) + (g2^3*g3^3*t^6.07)/(g1^15*g4^15) + t^6.07/(g1^12*g4^12) + (2*t^6.07)/(g1^9*g2^3*g3^3*g4^9) + (2*t^6.07)/(g1^6*g2^6*g3^6*g4^6) + (2*t^6.07)/(g1^3*g2^9*g3^9*g4^3) + (g1^3*g4^3*t^6.07)/(g2^15*g3^15) + (g1^3*g3^3*t^6.11)/(g2^3*g4^3) + (g1^4*g2^10*t^6.42)/(g3^2*g4^2) + (g3^4*g4^10*t^6.42)/(g1^2*g2^2) + (g1^10*g2^4*t^6.53)/(g3^2*g4^2) + (g3^10*g4^4*t^6.53)/(g1^2*g2^2) + (g2^11*g4^11*t^6.73)/(g1*g3) + (g2^5*g4^5*t^6.79)/(g1^7*g3^7) + (g2^11*g3^5*g4^5*t^6.83)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.83 + (g1^5*g2^5*g4^11*t^6.83)/g3 + (g2^8*g3^2*t^6.9)/(g1^10*g4^4) + (g2^5*t^6.9)/(g1^7*g3*g4) + (3*g2^2*g4^2*t^6.9)/(g1^4*g3^4) + (g4^5*t^6.9)/(g1*g2*g3^7) + (g1^2*g4^8*t^6.9)/(g2^4*g3^10) + g1^5*g2^5*g3^5*g4^5*t^6.94 + (g2^2*t^6.97)/(g1^16*g3^4*g4^10) + t^6.97/(g1^13*g2*g3^7*g4^7) + (2*t^6.97)/(g1^10*g2^4*g3^10*g4^4) + t^6.97/(g1^7*g2^7*g3^13*g4) + (g4^2*t^6.97)/(g1^4*g2^10*g3^16) + (g2^8*g3^8*t^7.01)/(g1^10*g4^10) + (3*g2^5*g3^5*t^7.01)/(g1^7*g4^7) + (5*g2^2*g3^2*t^7.01)/(g1^4*g4^4) + (4*t^7.01)/(g1*g2*g3*g4) + (5*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (3*g1^5*g4^5*t^7.01)/(g2^7*g3^7) + (g1^8*g4^8*t^7.01)/(g2^10*g3^10) + (g1^5*g2^5*g3^11*t^7.05)/g4 + g1^8*g2^2*g3^8*g4^2*t^7.05 + (g1^11*g3^5*g4^5*t^7.05)/g2 + (g1^2*g3^2*t^7.12)/(g2^4*g4^4) + (g2^15*t^7.32)/(g1^3*g3^3*g4^3) + (g4^15*t^7.32)/(g1^3*g2^3*g3^3) + (g2^12*t^7.43)/g4^6 + (2*g1^3*g2^9*t^7.43)/(g3^3*g4^3) + (2*g3^3*g4^9*t^7.43)/(g1^3*g2^3) + (g4^12*t^7.43)/g2^6 + (g1^12*t^7.54)/g3^6 + (g3^12*t^7.54)/g1^6 + (2*g1^9*g2^3*t^7.54)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.54)/(g1^3*g2^3) + (g1^15*t^7.65)/(g2^3*g3^3*g4^3) + (g3^15*t^7.65)/(g1^3*g2^3*g4^3) + (g2^13*g3*g4^7*t^7.74)/g1^5 + (3*g2^10*g4^10*t^7.74)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.74)/g3^5 + (g2^7*g4*t^7.8)/(g1^11*g3^5) + (2*g2^4*g4^4*t^7.8)/(g1^8*g3^8) + (g2*g4^7*t^7.8)/(g1^5*g3^11) + (g2^13*g3^7*g4*t^7.85)/g1^5 + (4*g2^10*g3^4*g4^4*t^7.85)/g1^2 + 3*g1*g2^7*g3*g4^7*t^7.85 + (4*g1^4*g2^4*g4^10*t^7.85)/g3^2 + (g1^7*g2*g4^13*t^7.85)/g3^5 + (g2*t^7.87)/(g1^17*g3^11*g4^5) + t^7.87/(g1^14*g2^2*g3^14*g4^2) + (g4*t^7.87)/(g1^11*g2^5*g3^17) + (g2^7*g3*t^7.91)/(g1^11*g4^5) + (2*g2^4*t^7.91)/(g1^8*g3^2*g4^2) + (3*g2*g4*t^7.91)/(g1^5*g3^5) + (2*g4^4*t^7.91)/(g1^2*g2^2*g3^8) + (g1*g4^7*t^7.91)/(g2^5*g3^11) + (g2^13*g3^13*t^7.95)/(g1^5*g4^5) + (3*g2^10*g3^10*t^7.95)/(g1^2*g4^2) + 4*g1*g2^7*g3^7*g4*t^7.95 + 7*g1^4*g2^4*g3^4*g4^4*t^7.95 + 4*g1^7*g2*g3*g4^7*t^7.95 + (3*g1^10*g4^10*t^7.95)/(g2^2*g3^2) + (g1^13*g4^13*t^7.95)/(g2^5*g3^5) - (4*g2*g3*t^8.02)/(g1^5*g4^5) - (5*t^8.02)/(g1^2*g2^2*g3^2*g4^2) - (4*g1*g4*t^8.02)/(g2^5*g3^5) + (g1^4*g2^4*g3^10*t^8.06)/g4^2 + (g1^10*g3^4*g4^4*t^8.06)/g2^2 + (g2^4*g3^4*t^8.09)/(g1^20*g4^20) + (g2*g3*t^8.09)/(g1^17*g4^17) + (2*t^8.09)/(g1^14*g2^2*g3^2*g4^14) + (2*t^8.09)/(g1^11*g2^5*g3^5*g4^11) + (3*t^8.09)/(g1^8*g2^8*g3^8*g4^8) + (2*t^8.09)/(g1^5*g2^11*g3^11*g4^5) + (2*t^8.09)/(g1^2*g2^14*g3^14*g4^2) + (g1*g4*t^8.09)/(g2^17*g3^17) + (g1^4*g4^4*t^8.09)/(g2^20*g3^20) - (g3^4*t^8.13)/(g1^2*g2^2*g4^8) - (g1^4*t^8.13)/(g2^8*g3^2*g4^2) + (g1^10*g3^10*t^8.17)/(g2^2*g4^2) + (g1^5*g2^17*g4^5*t^8.26)/g3 + (g2^5*g3^5*g4^17*t^8.26)/g1 + (g1^5*g2^17*g3^5*t^8.37)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.37 + (2*g1^11*g2^11*g4^5*t^8.37)/g3 + (2*g2^5*g3^11*g4^11*t^8.37)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.37 + (g1^5*g3^5*g4^17*t^8.37)/g2 + (g1^2*g2^8*t^8.44)/(g3^4*g4^4) + (g3^2*g4^8*t^8.44)/(g1^4*g2^4) + (g1^11*g2^11*g3^5*t^8.48)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.48 + (g1^17*g2^5*g4^5*t^8.48)/g3 + (g2^5*g3^17*g4^5*t^8.48)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.48 + (g1^5*g3^11*g4^11*t^8.48)/g2 - (g1^5*g2^5*t^8.55)/(g3*g4^7) + (g1^8*g2^2*t^8.55)/(g3^4*g4^4) + (g3^8*g4^2*t^8.55)/(g1^4*g2^4) - (g3^5*g4^5*t^8.55)/(g1*g2^7) + g2^18*g4^18*t^8.57 + (g2^12*g4^12*t^8.64)/(g1^6*g3^6) - (g1^11*t^8.66)/(g2*g3*g4^7) - (g3^11*t^8.66)/(g1*g2^7*g4) + g2^18*g3^6*g4^12*t^8.68 + g1^3*g2^15*g3^3*g4^15*t^8.68 + g1^6*g2^12*g4^18*t^8.68 + (g2^6*g4^6*t^8.71)/(g1^12*g3^12) + (g2^12*g4^6*t^8.75)/g1^6 + (3*g2^9*g4^9*t^8.75)/(g1^3*g3^3) + (g2^6*g4^12*t^8.75)/g3^6 + t^8.77/(g1^18*g3^18) + g2^18*g3^12*g4^6*t^8.79 + g1^3*g2^15*g3^9*g4^9*t^8.79 + 2*g1^6*g2^12*g3^6*g4^12*t^8.79 + g1^9*g2^9*g3^3*g4^15*t^8.79 + g1^12*g2^6*g4^18*t^8.79 + (g2^6*t^8.82)/(g1^12*g3^6) + (2*g2^3*g4^3*t^8.82)/(g1^9*g3^9) + (g4^6*t^8.82)/(g1^6*g3^12) + (g2^12*g3^6*t^8.86)/g1^6 + (3*g2^9*g3^3*g4^3*t^8.86)/g1^3 - 2*g2^6*g4^6*t^8.86 + (3*g1^3*g2^3*g4^9*t^8.86)/g3^3 + (g1^6*g4^12*t^8.86)/g3^6 + g2^18*g3^18*t^8.9 + g1^3*g2^15*g3^15*g4^3*t^8.9 + 2*g1^6*g2^12*g3^12*g4^6*t^8.9 + 2*g1^9*g2^9*g3^9*g4^9*t^8.9 + 2*g1^12*g2^6*g3^6*g4^12*t^8.9 + g1^15*g2^3*g3^3*g4^15*t^8.9 + g1^18*g4^18*t^8.9 - t^8.92/(g1^6*g3^6) + (g2^9*g3^3*t^8.92)/(g1^15*g4^9) + (g2^6*t^8.92)/(g1^12*g4^6) + (2*g2^3*t^8.92)/(g1^9*g3^3*g4^3) + (2*g4^3*t^8.92)/(g1^3*g2^3*g3^9) + (g4^6*t^8.92)/(g2^6*g3^12) + (g1^3*g4^9*t^8.92)/(g2^9*g3^15) - 5*g2^6*g3^6*t^8.97 - 2*g1^3*g2^3*g3^3*g4^3*t^8.97 - 5*g1^6*g4^6*t^8.97 + t^8.99/(g1^6*g2^12*g3^18) + (g2^3*t^8.99)/(g1^21*g3^3*g4^15) + t^8.99/(g1^18*g3^6*g4^12) + (2*t^8.99)/(g1^15*g2^3*g3^9*g4^9) + (2*t^8.99)/(g1^12*g2^6*g3^12*g4^6) + (2*t^8.99)/(g1^9*g2^9*g3^15*g4^3) + (g4^3*t^8.99)/(g1^3*g2^15*g3^21) - t^4.01/(g1*g2*g3*g4*y) - t^5.02/(g1^2*g2^2*g3^2*g4^2*y) - t^6.03/(g2^6*g3^6*y) - t^6.03/(g1^6*g4^6*y) - t^6.03/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.87)/(g1*g3*y) - t^6.94/(g1^7*g2*g3^7*g4*y) - (g2^5*g3^5*t^6.98)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.98)/y - (g1^5*g4^5*t^6.98)/(g2*g3*y) + (g2^7*g3*g4*t^7.88)/(g1^5*y) + (g1*g2*g4^7*t^7.88)/(g3^5*y) + (g2*t^7.95)/(g1^11*g3^5*g4^5*y) + (g4*t^7.95)/(g1^5*g2^5*g3^11*y) + (g2^7*g3^7*t^7.99)/(g1^5*g4^5*y) + (2*g2^4*g3^4*t^7.99)/(g1^2*g4^2*y) + (3*g1*g2*g3*g4*t^7.99)/y + (2*g1^4*g4^4*t^7.99)/(g2^2*g3^2*y) + (g1^7*g4^7*t^7.99)/(g2^5*g3^5*y) - (g2*g3*t^8.06)/(g1^11*g4^11*y) - t^8.06/(g1^8*g2^2*g3^2*g4^8*y) - (2*t^8.06)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.06/(g1^2*g2^8*g3^8*g4^2*y) - (g1*g4*t^8.06)/(g2^11*g3^11*y) + (g2^6*g4^6*t^8.78)/(g1^6*g3^6*y) + (g2^12*g3^6*g4^6*t^8.82)/y + (g1^3*g2^9*g3^3*g4^9*t^8.82)/y + (g1^6*g2^6*g4^12*t^8.82)/y + (g2^6*t^8.89)/(g1^6*y) + (g4^6*t^8.89)/(g3^6*y) + (g1^3*g2^9*g3^9*g4^3*t^8.93)/y + (g1^6*g2^6*g3^6*g4^6*t^8.93)/y + (g1^9*g2^3*g3^3*g4^9*t^8.93)/y - t^8.96/(g1^6*g2^6*g3^12*y) - t^8.96/(g1^12*g3^6*g4^6*y) - t^8.96/(g1^9*g2^3*g3^9*g4^3*y) - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.02*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.03*y)/(g2^6*g3^6) - (t^6.03*y)/(g1^6*g4^6) - (t^6.03*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.87*y)/(g1*g3) - (t^6.94*y)/(g1^7*g2*g3^7*g4) - (g2^5*g3^5*t^6.98*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.98*y - (g1^5*g4^5*t^6.98*y)/(g2*g3) + (g2^7*g3*g4*t^7.88*y)/g1^5 + (g1*g2*g4^7*t^7.88*y)/g3^5 + (g2*t^7.95*y)/(g1^11*g3^5*g4^5) + (g4*t^7.95*y)/(g1^5*g2^5*g3^11) + (g2^7*g3^7*t^7.99*y)/(g1^5*g4^5) + (2*g2^4*g3^4*t^7.99*y)/(g1^2*g4^2) + 3*g1*g2*g3*g4*t^7.99*y + (2*g1^4*g4^4*t^7.99*y)/(g2^2*g3^2) + (g1^7*g4^7*t^7.99*y)/(g2^5*g3^5) - (g2*g3*t^8.06*y)/(g1^11*g4^11) - (t^8.06*y)/(g1^8*g2^2*g3^2*g4^8) - (2*t^8.06*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.06*y)/(g1^2*g2^8*g3^8*g4^2) - (g1*g4*t^8.06*y)/(g2^11*g3^11) + (g2^6*g4^6*t^8.78*y)/(g1^6*g3^6) + g2^12*g3^6*g4^6*t^8.82*y + g1^3*g2^9*g3^3*g4^9*t^8.82*y + g1^6*g2^6*g4^12*t^8.82*y + (g2^6*t^8.89*y)/g1^6 + (g4^6*t^8.89*y)/g3^6 + g1^3*g2^9*g3^9*g4^3*t^8.93*y + g1^6*g2^6*g3^6*g4^6*t^8.93*y + g1^9*g2^3*g3^3*g4^9*t^8.93*y - (t^8.96*y)/(g1^6*g2^6*g3^12) - (t^8.96*y)/(g1^12*g3^6*g4^6) - (t^8.96*y)/(g1^9*g2^3*g3^9*g4^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57481 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4968 1.7304 0.865 [X:[], M:[0.9878, 0.9758, 0.6733], q:[0.5114, 0.4764], qb:[0.5129, 0.475], phi:[0.3374]] 2*t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.87 + t^3.97 + 2*t^4.04 + t^4.05 + t^4.08 + t^4.87 + 2*t^4.88 + 2*t^4.95 + 4*t^4.98 + 4*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + t^5.81 + 2*t^5.82 + t^5.85 + 3*t^5.89 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail