Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59451 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.4966 1.7281 0.866 [X:[], M:[0.9974, 0.9661, 0.6736], q:[0.5197, 0.4779], qb:[0.5143, 0.4829], phi:[0.3342]] [X:[], M:[[3, 3, 0], [3, -6, 1], [-8, -8, 0]], q:[[-3, -3, -1], [9, 0, 0]], qb:[[0, 9, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.01 + t^2.02 + t^2.88 + t^2.9 + t^2.98 + t^2.99 + t^3.01 + t^3.89 + 2*t^4.01 + t^4.03 + t^4.04 + t^4.1 + 2*t^4.89 + 2*t^4.9 + t^4.92 + 2*t^4.98 + 2*t^5. + 3*t^5.01 + t^5.03 + t^5.11 + t^5.43 + t^5.44 + t^5.54 + t^5.55 + t^5.76 + t^5.78 + t^5.8 + t^5.86 + t^5.87 + 3*t^5.89 + t^5.91 + t^5.95 + t^5.97 + 2*t^5.98 - 3*t^6. + 3*t^6.02 + 2*t^6.03 + t^6.05 + t^6.06 - t^6.09 + t^6.11 + t^6.43 + t^6.45 + t^6.54 + t^6.56 + t^6.77 + t^6.78 + t^6.86 + 4*t^6.89 + 3*t^6.91 + 2*t^6.92 + t^6.94 + 4*t^6.99 + 2*t^7. + 5*t^7.02 + 3*t^7.03 + t^7.05 + t^7.08 + 2*t^7.11 + t^7.31 + t^7.35 + t^7.43 + 2*t^7.45 + t^7.46 + t^7.54 + 2*t^7.56 + t^7.58 + t^7.64 + t^7.68 + 3*t^7.77 + 3*t^7.79 + 2*t^7.8 + t^7.82 + 3*t^7.86 + 2*t^7.88 + 7*t^7.9 + 3*t^7.91 + t^7.93 + 2*t^7.96 + 2*t^7.97 + 6*t^7.99 - 2*t^8.01 + 2*t^8.02 + 3*t^8.04 + 2*t^8.05 + t^8.07 + 2*t^8.08 - 2*t^8.1 + 2*t^8.11 - t^8.13 + t^8.21 + t^8.31 + t^8.33 + t^8.41 + 2*t^8.42 + 3*t^8.44 + 2*t^8.45 + t^8.51 + t^8.53 + 2*t^8.54 - t^8.55 + t^8.56 + t^8.66 - t^8.67 + t^8.68 + t^8.69 + t^8.74 + t^8.76 + 4*t^8.77 + 3*t^8.79 + t^8.8 + t^8.84 + t^8.85 + 4*t^8.87 - 3*t^8.88 + 4*t^8.9 + 5*t^8.91 + 4*t^8.93 + 3*t^8.95 + 3*t^8.96 - 4*t^8.98 + 4*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.02/y - t^6.89/y - t^6.9/y - t^6.98/y - t^6.99/y - (2*t^7.01)/y + t^7.9/y + t^7.92/y + t^7.98/y + (2*t^8.)/y - t^8.04/y + t^8.78/y + t^8.86/y + (2*t^8.87)/y + t^8.89/y - t^8.92/y + t^8.97/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.02*y - t^6.89*y - t^6.9*y - t^6.98*y - t^6.99*y - 2*t^7.01*y + t^7.9*y + t^7.92*y + t^7.98*y + 2*t^8.*y - t^8.04*y + t^8.78*y + t^8.86*y + 2*t^8.87*y + t^8.89*y - t^8.92*y + t^8.97*y t^2.01/(g1^2*g2^2) + t^2.02/(g1^8*g2^8) + g1^9*g3*t^2.88 + (g1^3*g3*t^2.9)/g2^6 + g1^9*g2^9*t^2.98 + g1^3*g2^3*t^2.99 + t^3.01/(g1^3*g2^3) + (g1^8*g3*t^3.89)/g2 + (2*t^4.01)/(g1^4*g2^4) + t^4.03/(g1^10*g2^10) + t^4.04/(g1^16*g2^16) + (g2^5*t^4.1)/(g1^4*g3) + (2*g1^7*g3*t^4.89)/g2^2 + (2*g1*g3*t^4.9)/g2^8 + (g3*t^4.92)/(g1^5*g2^14) + 2*g1^7*g2^7*t^4.98 + 2*g1*g2*t^5. + (3*t^5.01)/(g1^5*g2^5) + t^5.03/(g1^11*g2^11) + (g2^4*t^5.11)/(g1^5*g3) + (g1^14*t^5.43)/(g2^4*g3) + (g2^8*g3^2*t^5.44)/g1 + (g2^17*g3*t^5.54)/g1 + (g1^2*t^5.55)/(g2^7*g3^2) + g1^18*g3^2*t^5.76 + (g1^12*g3^2*t^5.78)/g2^6 + (g1^6*g3^2*t^5.8)/g2^12 + g1^18*g2^9*g3*t^5.86 + g1^12*g2^3*g3*t^5.87 + (3*g1^6*g3*t^5.89)/g2^3 + (g3*t^5.91)/g2^9 + g1^18*g2^18*t^5.95 + g1^12*g2^12*t^5.97 + 2*g1^6*g2^6*t^5.98 - 3*t^6. + (3*t^6.02)/(g1^6*g2^6) + (2*t^6.03)/(g1^12*g2^12) + t^6.05/(g1^18*g2^18) + t^6.06/(g1^24*g2^24) - (g2^9*t^6.09)/g3 + (g2^3*t^6.11)/(g1^6*g3) + (g1^13*t^6.43)/(g2^5*g3) + (g2^7*g3^2*t^6.45)/g1^2 + (g2^16*g3*t^6.54)/g1^2 + (g1*t^6.56)/(g2^8*g3^2) + (g1^17*g3^2*t^6.77)/g2 + (g1^11*g3^2*t^6.78)/g2^7 + g1^17*g2^8*g3*t^6.86 + (4*g1^5*g3*t^6.89)/g2^4 + (3*g3*t^6.91)/(g1*g2^10) + (2*g3*t^6.92)/(g1^7*g2^16) + (g3*t^6.94)/(g1^13*g2^22) + 4*g1^5*g2^5*t^6.99 + (2*t^7.)/(g1*g2) + (5*t^7.02)/(g1^7*g2^7) + (3*t^7.03)/(g1^13*g2^13) + t^7.05/(g1^19*g2^19) + (g1^5*g2^14*t^7.08)/g3 + (2*g2^2*t^7.11)/(g1^7*g3) + (g1^24*t^7.31)/g2^3 + (g3^3*t^7.35)/(g1^3*g2^3) + (2*g1^12*t^7.43)/(g2^6*g3) - g1^3*g2^12*g3^2*t^7.43 + (2*g2^6*g3^2*t^7.45)/g1^3 + (g3^2*t^7.46)/g1^9 - (g1^6*t^7.54)/(g2^3*g3^2) + (2*g2^15*g3*t^7.54)/g1^3 + (2*t^7.56)/(g2^9*g3^2) + t^7.58/(g1^6*g2^15*g3^2) + (g2^24*t^7.64)/g1^3 + t^7.68/(g1^12*g2^12*g3^3) + (3*g1^16*g3^2*t^7.77)/g2^2 + (3*g1^10*g3^2*t^7.79)/g2^8 + (2*g1^4*g3^2*t^7.8)/g2^14 + (g3^2*t^7.82)/(g1^2*g2^20) + 3*g1^16*g2^7*g3*t^7.86 + 2*g1^10*g2*g3*t^7.88 + (7*g1^4*g3*t^7.9)/g2^5 + (3*g3*t^7.91)/(g1^2*g2^11) + (g3*t^7.93)/(g1^8*g2^17) + 2*g1^16*g2^16*t^7.96 + 2*g1^10*g2^10*t^7.97 + 6*g1^4*g2^4*t^7.99 - (2*t^8.01)/(g1^2*g2^2) + (2*t^8.02)/(g1^8*g2^8) + (3*t^8.04)/(g1^14*g2^14) + (2*t^8.05)/(g1^20*g2^20) + t^8.07/(g1^26*g2^26) + t^8.08/(g1^32*g2^32) + (g1^4*g2^13*t^8.08)/g3 - (2*g2^7*t^8.1)/(g1^2*g3) + (2*g2*t^8.11)/(g1^8*g3) - t^8.13/(g1^14*g2^5*g3) + (g2^10*t^8.21)/(g1^8*g3^2) + (g1^23*t^8.31)/g2^4 + g1^8*g2^8*g3^3*t^8.33 + (g1^23*g2^5*t^8.41)/g3 + 2*g1^8*g2^17*g3^2*t^8.42 + (3*g1^11*t^8.44)/(g2^7*g3) + (2*g2^5*g3^2*t^8.45)/g1^4 + g1^8*g2^26*g3*t^8.51 + (g1^11*g2^2*t^8.53)/g3^2 + (2*g2^14*g3*t^8.54)/g1^4 - (g1^5*t^8.55)/(g2^4*g3^2) + (2*t^8.56)/(g1*g2^10*g3^2) - (g2^8*g3*t^8.56)/g1^10 - (g2^17*t^8.65)/g1^10 + g1^27*g3^3*t^8.65 + (g1^21*g3^3*t^8.66)/g2^6 - t^8.67/(g1^7*g2^7*g3^3) + (g1^15*g3^3*t^8.68)/g2^12 + (g1^9*g3^3*t^8.69)/g2^18 + g1^27*g2^9*g3^2*t^8.74 + g1^21*g2^3*g3^2*t^8.76 + (4*g1^15*g3^2*t^8.77)/g2^3 + (3*g1^9*g3^2*t^8.79)/g2^9 + (g1^3*g3^2*t^8.8)/g2^15 + g1^27*g2^18*g3*t^8.84 + g1^21*g2^12*g3*t^8.85 + 4*g1^15*g2^6*g3*t^8.87 - 3*g1^9*g3*t^8.88 + (4*g1^3*g3*t^8.9)/g2^6 + (5*g3*t^8.91)/(g1^3*g2^12) + g1^27*g2^27*t^8.93 + (3*g3*t^8.93)/(g1^9*g2^18) + g1^21*g2^21*t^8.95 + (2*g3*t^8.95)/(g1^15*g2^24) + 2*g1^15*g2^15*t^8.96 + (g3*t^8.96)/(g1^21*g2^30) - 4*g1^9*g2^9*t^8.98 + 4*g1^3*g2^3*t^8.99 - t^4./(g1*g2*y) - t^5.01/(g1^2*g2^2*y) - t^6.01/(g1^3*g2^3*y) - t^6.02/(g1^9*g2^9*y) - (g1^8*g3*t^6.89)/(g2*y) - (g1^2*g3*t^6.9)/(g2^7*y) - (g1^8*g2^8*t^6.98)/y - (g1^2*g2^2*t^6.99)/y - (2*t^7.01)/(g1^4*g2^4*y) + (g1*g3*t^7.9)/(g2^8*y) + (g3*t^7.92)/(g1^5*g2^14*y) + (g1^7*g2^7*t^7.98)/y + (2*g1*g2*t^8.)/y - t^8.04/(g1^17*g2^17*y) + (g1^12*g3^2*t^8.78)/(g2^6*y) + (g1^18*g2^9*g3*t^8.86)/y + (2*g1^12*g2^3*g3*t^8.87)/y + (g1^6*g3*t^8.89)/(g2^3*y) - (g3*t^8.92)/(g1^6*g2^15*y) + (g1^12*g2^12*t^8.97)/y - (t^4.*y)/(g1*g2) - (t^5.01*y)/(g1^2*g2^2) - (t^6.01*y)/(g1^3*g2^3) - (t^6.02*y)/(g1^9*g2^9) - (g1^8*g3*t^6.89*y)/g2 - (g1^2*g3*t^6.9*y)/g2^7 - g1^8*g2^8*t^6.98*y - g1^2*g2^2*t^6.99*y - (2*t^7.01*y)/(g1^4*g2^4) + (g1*g3*t^7.9*y)/g2^8 + (g3*t^7.92*y)/(g1^5*g2^14) + g1^7*g2^7*t^7.98*y + 2*g1*g2*t^8.*y - (t^8.04*y)/(g1^17*g2^17) + (g1^12*g3^2*t^8.78*y)/g2^6 + g1^18*g2^9*g3*t^8.86*y + 2*g1^12*g2^3*g3*t^8.87*y + (g1^6*g3*t^8.89*y)/g2^3 - (g3*t^8.92*y)/(g1^6*g2^15) + g1^12*g2^12*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57481 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4968 1.7304 0.865 [X:[], M:[0.9878, 0.9758, 0.6733], q:[0.5114, 0.4764], qb:[0.5129, 0.475], phi:[0.3374]] 2*t^2.02 + t^2.85 + t^2.93 + 2*t^2.96 + t^2.97 + t^3.87 + t^3.97 + 2*t^4.04 + t^4.05 + t^4.08 + t^4.87 + 2*t^4.88 + 2*t^4.95 + 4*t^4.98 + 4*t^4.99 + t^5.1 + 2*t^5.4 + 2*t^5.51 + t^5.71 + t^5.78 + t^5.81 + 2*t^5.82 + t^5.85 + 3*t^5.89 + 2*t^5.92 + 3*t^5.93 + t^5.94 + t^5.99 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail