Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55700 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ + $ \phi_1q_1\tilde{q}_2$ | 0.9017 | 1.1225 | 0.8033 | [X:[], M:[0.681, 0.7688, 0.681], q:[0.7337, 0.5854, 0.6156], qb:[0.6156, 0.7337, 0.5854], phi:[0.5327]] | [X:[], M:[[-4, -1, -1, 1, -1], [0, -3, -3, 0, 0], [0, 0, 0, -1, -3]], q:[[1, 1, 1, -1, 1], [3, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 3]], phi:[[-1, -1, -1, 0, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_2q_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_1q_3$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_2M_3$, $ M_1M_2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_3$, $ M_3\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_2\phi_1^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1q_3$, $ M_3q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$ | $\phi_1q_1^2$, $ \phi_1\tilde{q}_2^2$ | -5 | 2*t^2.04 + t^2.31 + t^3.2 + t^3.51 + 4*t^3.6 + 2*t^3.96 + 4*t^4.05 + 3*t^4.09 + 2*t^4.35 + t^4.4 + t^4.61 + 3*t^5.11 + 4*t^5.2 + 2*t^5.24 + 3*t^5.29 + t^5.5 + 2*t^5.56 + 8*t^5.65 + t^5.82 - 5*t^6. + 4*t^6.09 + 4*t^6.13 + 2*t^6.26 + 4*t^6.39 - 2*t^6.44 + 2*t^6.66 + 2*t^6.71 + 4*t^6.8 + t^6.92 + t^7.02 + 4*t^7.12 + 4*t^7.15 + 9*t^7.21 + 8*t^7.24 + 3*t^7.28 + 6*t^7.33 + 3*t^7.42 + 2*t^7.47 + 2*t^7.55 + 8*t^7.56 - t^7.6 + 12*t^7.65 + 8*t^7.69 + t^7.81 + 2*t^7.86 + 4*t^8. - 12*t^8.04 + 6*t^8.1 + t^8.12 + 4*t^8.13 + 5*t^8.17 + t^8.31 - 2*t^8.36 + 4*t^8.4 + 6*t^8.44 + t^8.49 + 2*t^8.57 + 3*t^8.62 + 4*t^8.7 + 12*t^8.71 + 10*t^8.8 + 8*t^8.84 + 8*t^8.89 + 2*t^8.96 - t^4.6/y - (2*t^6.64)/y - t^6.9/y + t^7.09/y + (2*t^7.35)/y + t^7.4/y - t^7.79/y + (2*t^8.24)/y + t^8.29/y + t^8.5/y + (4*t^8.56)/y + (8*t^8.65)/y - (3*t^8.68)/y + t^8.82/y + (4*t^8.91)/y - (2*t^8.95)/y - t^4.6*y - 2*t^6.64*y - t^6.9*y + t^7.09*y + 2*t^7.35*y + t^7.4*y - t^7.79*y + 2*t^8.24*y + t^8.29*y + t^8.5*y + 4*t^8.56*y + 8*t^8.65*y - 3*t^8.68*y + t^8.82*y + 4*t^8.91*y - 2*t^8.95*y | t^2.04/(g4*g5^3) + (g4*t^2.04)/(g1^4*g2*g3*g5) + t^2.31/(g2^3*g3^3) + t^3.2/(g1^2*g2^2*g3^2*g5^2) + g1^3*g5^3*t^3.51 + g1^3*g2^3*t^3.6 + g1^3*g3^3*t^3.6 + g2^3*g5^3*t^3.6 + g3^3*g5^3*t^3.6 + g1^3*g4*t^3.96 + (g1*g2*g3*g5^4*t^3.96)/g4 + g2^3*g4*t^4.05 + g3^3*g4*t^4.05 + (g1*g2^4*g3*g5*t^4.05)/g4 + (g1*g2*g3^4*g5*t^4.05)/g4 + t^4.09/(g4^2*g5^6) + t^4.09/(g1^4*g2*g3*g5^4) + (g4^2*t^4.09)/(g1^8*g2^2*g3^2*g5^2) + t^4.35/(g2^3*g3^3*g4*g5^3) + (g4*t^4.35)/(g1^4*g2^4*g3^4*g5) + g1*g2*g3*g5*t^4.4 + t^4.61/(g2^6*g3^6) + (g1^5*t^5.11)/(g2*g3*g5) + (g1^2*g5^2*t^5.11)/(g2*g3) + (g5^5*t^5.11)/(g1*g2*g3) + (g1^2*g2^2*t^5.2)/(g3*g5) + (g1^2*g3^2*t^5.2)/(g2*g5) + (g2^2*g5^2*t^5.2)/(g1*g3) + (g3^2*g5^2*t^5.2)/(g1*g2) + t^5.24/(g1^2*g2^2*g3^2*g4*g5^5) + (g4*t^5.24)/(g1^6*g2^3*g3^3*g5^3) + (g2^5*t^5.29)/(g1*g3*g5) + (g2^2*g3^2*t^5.29)/(g1*g5) + (g3^5*t^5.29)/(g1*g2*g5) + t^5.5/(g1^2*g2^5*g3^5*g5^2) + (g1^3*t^5.56)/g4 + (g4*g5^2*t^5.56)/(g1*g2*g3) + (g2^3*t^5.65)/g4 + (g3^3*t^5.65)/g4 + (g1^3*g2^3*t^5.65)/(g4*g5^3) + (g1^3*g3^3*t^5.65)/(g4*g5^3) + (g2^2*g4*t^5.65)/(g1*g3*g5) + (g3^2*g4*t^5.65)/(g1*g2*g5) + (g2^2*g4*g5^2*t^5.65)/(g1^4*g3) + (g3^2*g4*g5^2*t^5.65)/(g1^4*g2) + (g1^3*g5^3*t^5.82)/(g2^3*g3^3) - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 + (g4^2*t^6.)/(g1*g2*g3*g5) + (g1*g2*g3*g5*t^6.)/g4^2 + (g1*g2^4*g3*t^6.09)/(g4^2*g5^2) + (g1*g2*g3^4*t^6.09)/(g4^2*g5^2) + (g2^2*g4^2*t^6.09)/(g1^4*g3*g5) + (g3^2*g4^2*t^6.09)/(g1^4*g2*g5) + t^6.13/(g4^3*g5^9) + t^6.13/(g1^4*g2*g3*g4*g5^7) + (g4*t^6.13)/(g1^8*g2^2*g3^2*g5^5) + (g4^3*t^6.13)/(g1^12*g2^3*g3^3*g5^3) + (g1^3*g4*t^6.26)/(g2^3*g3^3) + (g1*g5^4*t^6.26)/(g2^2*g3^2*g4) + t^6.39/(g2^3*g3^3*g4^2*g5^6) + (2*t^6.39)/(g1^4*g2^4*g3^4*g5^4) + (g4^2*t^6.39)/(g1^8*g2^5*g3^5*g5^2) - (g4*t^6.44)/g5^3 - (g2*g3*g5*t^6.44)/(g1^2*g4) + t^6.66/(g2^6*g3^6*g4*g5^3) + (g4*t^6.66)/(g1^4*g2^7*g3^7*g5) + (2*g1*g5*t^6.71)/(g2^2*g3^2) + (g1*g2*t^6.8)/(g3^2*g5^2) + (g1*g3*t^6.8)/(g2^2*g5^2) + (g2*g5*t^6.8)/(g1^2*g3^2) + (g3*g5*t^6.8)/(g1^2*g2^2) + t^6.92/(g2^9*g3^9) + g1^6*g5^6*t^7.02 + g1^6*g2^3*g5^3*t^7.12 + g1^6*g3^3*g5^3*t^7.12 + g1^3*g2^3*g5^6*t^7.12 + g1^3*g3^3*g5^6*t^7.12 + (g1^5*t^7.15)/(g2*g3*g4*g5^4) + (g1*g4*t^7.15)/(g2^2*g3^2*g5^2) + (g5^2*t^7.15)/(g1*g2*g3*g4) + (g4*g5^4*t^7.15)/(g1^5*g2^2*g3^2) + g1^6*g2^6*t^7.21 + g1^6*g2^3*g3^3*t^7.21 + g1^6*g3^6*t^7.21 + g1^3*g2^6*g5^3*t^7.21 + g1^3*g2^3*g3^3*g5^3*t^7.21 + g1^3*g3^6*g5^3*t^7.21 + g2^6*g5^6*t^7.21 + g2^3*g3^3*g5^6*t^7.21 + g3^6*g5^6*t^7.21 + (g1^2*g2^2*t^7.24)/(g3*g4*g5^4) + (g1^2*g3^2*t^7.24)/(g2*g4*g5^4) + (g2*g4*t^7.24)/(g1^2*g3^2*g5^2) + (g3*g4*t^7.24)/(g1^2*g2^2*g5^2) + (g2^2*t^7.24)/(g1*g3*g4*g5) + (g3^2*t^7.24)/(g1*g2*g4*g5) + (g2*g4*g5*t^7.24)/(g1^5*g3^2) + (g3*g4*g5*t^7.24)/(g1^5*g2^2) + t^7.28/(g1^2*g2^2*g3^2*g4^2*g5^8) + t^7.28/(g1^6*g2^3*g3^3*g5^6) + (g4^2*t^7.28)/(g1^10*g2^4*g3^4*g5^4) + (g2^5*t^7.33)/(g1*g3*g4*g5^4) + (g2^2*g3^2*t^7.33)/(g1*g4*g5^4) + (g3^5*t^7.33)/(g1*g2*g4*g5^4) + (g2^4*g4*t^7.33)/(g1^5*g3^2*g5^2) + (g2*g3*g4*t^7.33)/(g1^5*g5^2) + (g3^4*g4*t^7.33)/(g1^5*g2^2*g5^2) + (g1^5*t^7.42)/(g2^4*g3^4*g5) + (g1^2*g5^2*t^7.42)/(g2^4*g3^4) + (g5^5*t^7.42)/(g1*g2^4*g3^4) + g1^6*g4*g5^3*t^7.47 + (g1^4*g2*g3*g5^7*t^7.47)/g4 + t^7.55/(g1^2*g2^5*g3^5*g4*g5^5) + (g4*t^7.55)/(g1^6*g2^6*g3^6*g5^3) + g1^6*g2^3*g4*t^7.56 + g1^6*g3^3*g4*t^7.56 + g1^3*g2^3*g4*g5^3*t^7.56 + g1^3*g3^3*g4*g5^3*t^7.56 + (g1^4*g2^4*g3*g5^4*t^7.56)/g4 + (g1^4*g2*g3^4*g5^4*t^7.56)/g4 + (g1*g2^4*g3*g5^7*t^7.56)/g4 + (g1*g2*g3^4*g5^7*t^7.56)/g4 - (g1^2*t^7.6)/(g2*g3*g5^4) + (g1^3*t^7.6)/(g4^2*g5^3) - t^7.6/(g1*g2*g3*g5) + (g4^2*g5*t^7.6)/(g1^5*g2^2*g3^2) - (g5^2*t^7.6)/(g1^4*g2*g3) + g1^3*g2^6*g4*t^7.65 + g1^3*g2^3*g3^3*g4*t^7.65 + g1^3*g3^6*g4*t^7.65 + (g1^4*g2^7*g3*g5*t^7.65)/g4 + (g1^4*g2^4*g3^4*g5*t^7.65)/g4 + (g1^4*g2*g3^7*g5*t^7.65)/g4 + g2^6*g4*g5^3*t^7.65 + g2^3*g3^3*g4*g5^3*t^7.65 + g3^6*g4*g5^3*t^7.65 + (g1*g2^7*g3*g5^4*t^7.65)/g4 + (g1*g2^4*g3^4*g5^4*t^7.65)/g4 + (g1*g2*g3^7*g5^4*t^7.65)/g4 + (g1^3*g2^3*t^7.69)/(g4^2*g5^6) + (g1^3*g3^3*t^7.69)/(g4^2*g5^6) + (g2^3*t^7.69)/(g4^2*g5^3) + (g3^3*t^7.69)/(g4^2*g5^3) + (g2*g4^2*t^7.69)/(g1^5*g3^2*g5^2) + (g3*g4^2*t^7.69)/(g1^5*g2^2*g5^2) + (g2*g4^2*g5*t^7.69)/(g1^8*g3^2) + (g3*g4^2*g5*t^7.69)/(g1^8*g2^2) + t^7.81/(g1^2*g2^8*g3^8*g5^2) + (g1^3*t^7.86)/(g2^3*g3^3*g4) + (g4*g5^2*t^7.86)/(g1*g2^4*g3^4) + g1^6*g4^2*t^7.91 - g1^7*g2*g3*g5*t^7.91 - g1*g2*g3*g5^7*t^7.91 + (g1^2*g2^2*g3^2*g5^8*t^7.91)/g4^2 + g1^3*g2^3*g4^2*t^8. + g1^3*g3^3*g4^2*t^8. + (g1^2*g2^5*g3^2*g5^5*t^8.)/g4^2 + (g1^2*g2^2*g3^5*g5^5*t^8.)/g4^2 - (5*t^8.04)/(g4*g5^3) - (g2^3*t^8.04)/(g3^3*g4*g5^3) - (g3^3*t^8.04)/(g2^3*g4*g5^3) + (g1*g2*g3*t^8.04)/(g4^3*g5^2) + (g4^3*t^8.04)/(g1^5*g2^2*g3^2*g5^2) - (g2^2*g4*t^8.04)/(g1^4*g3^4*g5) - (5*g4*t^8.04)/(g1^4*g2*g3*g5) - (g3^2*g4*t^8.04)/(g1^4*g2^4*g5) + g2^6*g4^2*t^8.1 + g2^3*g3^3*g4^2*t^8.1 + g3^6*g4^2*t^8.1 + (g1^2*g2^8*g3^2*g5^2*t^8.1)/g4^2 + (g1^2*g2^5*g3^5*g5^2*t^8.1)/g4^2 + (g1^2*g2^2*g3^8*g5^2*t^8.1)/g4^2 + (g1^3*g5^3*t^8.12)/(g2^6*g3^6) + (g1*g2^4*g3*t^8.13)/(g4^3*g5^5) + (g1*g2*g3^4*t^8.13)/(g4^3*g5^5) + (g2*g4^3*t^8.13)/(g1^8*g3^2*g5^2) + (g3*g4^3*t^8.13)/(g1^8*g2^2*g5^2) + t^8.17/(g4^4*g5^12) + t^8.17/(g1^4*g2*g3*g4^2*g5^10) + t^8.17/(g1^8*g2^2*g3^2*g5^8) + (g4^2*t^8.17)/(g1^12*g2^3*g3^3*g5^6) + (g4^4*t^8.17)/(g1^16*g2^4*g3^4*g5^4) - (3*t^8.31)/(g2^3*g3^3) + (g1^3*t^8.31)/(g2^3*g3^3*g5^3) + (g4^2*t^8.31)/(g1*g2^4*g3^4*g5) + (g1*g5*t^8.31)/(g2^2*g3^2*g4^2) + (g5^3*t^8.31)/(g1^3*g2^3*g3^3) - (g1^5*g2^2*g3^2*g5^2*t^8.36)/g4 - g1*g2*g3*g4*g5^4*t^8.36 + t^8.4/(g1^3*g2^3) + t^8.4/(g1^3*g3^3) + t^8.4/(g2^3*g5^3) + t^8.4/(g3^3*g5^3) + t^8.44/(g2^3*g3^3*g4^3*g5^9) + (2*t^8.44)/(g1^4*g2^4*g3^4*g4*g5^7) + (2*g4*t^8.44)/(g1^8*g2^5*g3^5*g5^5) + (g4^3*t^8.44)/(g1^12*g2^6*g3^6*g5^3) - (g4^2*t^8.49)/(g1^4*g2*g3*g5^4) + t^8.49/(g1^3*g5^3) + (g2^3*t^8.49)/(g1^3*g3^3*g5^3) + (g3^3*t^8.49)/(g1^3*g2^3*g5^3) - (g2*g3*t^8.49)/(g1^2*g4^2*g5^2) + (g1^3*g4*t^8.57)/(g2^6*g3^6) + (g1*g5^4*t^8.57)/(g2^5*g3^5*g4) + (g1^8*g5^2*t^8.62)/(g2*g3) + (g1^5*g5^5*t^8.62)/(g2*g3) + (g1^2*g5^8*t^8.62)/(g2*g3) + t^8.7/(g2^6*g3^6*g4^2*g5^6) + (2*t^8.7)/(g1^4*g2^7*g3^7*g5^4) + (g4^2*t^8.7)/(g1^8*g2^8*g3^8*g5^2) + (g1^8*g2^2*t^8.71)/(g3*g5) + (g1^8*g3^2*t^8.71)/(g2*g5) + (2*g1^5*g2^2*g5^2*t^8.71)/g3 + (2*g1^5*g3^2*g5^2*t^8.71)/g2 + (2*g1^2*g2^2*g5^5*t^8.71)/g3 + (2*g1^2*g3^2*g5^5*t^8.71)/g2 + (g2^2*g5^8*t^8.71)/(g1*g3) + (g3^2*g5^8*t^8.71)/(g1*g2) + (g4*t^8.75)/(g1^3*g2^3*g3^3) - (g4*t^8.75)/(g2^3*g3^3*g5^3) + (g1*t^8.75)/(g2^2*g3^2*g4*g5^2) - (g5*t^8.75)/(g1^2*g2^2*g3^2*g4) + (g1^5*g2^5*t^8.8)/(g3*g5) + (g1^5*g2^2*g3^2*t^8.8)/g5 + (g1^5*g3^5*t^8.8)/(g2*g5) - g1*g2*g3*g4^2*g5*t^8.8 + (2*g1^2*g2^5*g5^2*t^8.8)/g3 + 2*g1^2*g2^2*g3^2*g5^2*t^8.8 + (2*g1^2*g3^5*g5^2*t^8.8)/g2 - (g1^3*g2^3*g3^3*g5^3*t^8.8)/g4^2 + (g2^5*g5^5*t^8.8)/(g1*g3) + (g2^2*g3^2*g5^5*t^8.8)/g1 + (g3^5*g5^5*t^8.8)/(g1*g2) + (g4*t^8.84)/(g1^6*g2^3) + (g4*t^8.84)/(g1^6*g3^3) + (g1*g2*t^8.84)/(g3^2*g4*g5^5) + (g1*g3*t^8.84)/(g2^2*g4*g5^5) + (g4*t^8.84)/(g1^3*g2^3*g5^3) + (g4*t^8.84)/(g1^3*g3^3*g5^3) + (g2*t^8.84)/(g1^2*g3^2*g4*g5^2) + (g3*t^8.84)/(g1^2*g2^2*g4*g5^2) + (g1^2*g2^8*t^8.89)/(g3*g5) + (g1^2*g2^5*g3^2*t^8.89)/g5 + (g1^2*g2^2*g3^5*t^8.89)/g5 + (g1^2*g3^8*t^8.89)/(g2*g5) + (g2^8*g5^2*t^8.89)/(g1*g3) + (g2^5*g3^2*g5^2*t^8.89)/g1 + (g2^2*g3^5*g5^2*t^8.89)/g1 + (g3^8*g5^2*t^8.89)/(g1*g2) + t^8.96/(g2^9*g3^9*g4*g5^3) + (g4*t^8.96)/(g1^4*g2^10*g3^10*g5) - t^4.6/(g1*g2*g3*g5*y) - t^6.64/(g1*g2*g3*g4*g5^4*y) - (g4*t^6.64)/(g1^5*g2^2*g3^2*g5^2*y) - t^6.9/(g1*g2^4*g3^4*g5*y) + t^7.09/(g1^4*g2*g3*g5^4*y) + t^7.35/(g2^3*g3^3*g4*g5^3*y) + (g4*t^7.35)/(g1^4*g2^4*g3^4*g5*y) + (g1*g2*g3*g5*t^7.4)/y - t^7.79/(g1^3*g2^3*g3^3*g5^3*y) + t^8.24/(g1^2*g2^2*g3^2*g4*g5^5*y) + (g4*t^8.24)/(g1^6*g2^3*g3^3*g5^3*y) + (g2^2*g3^2*t^8.29)/(g1*g5*y) + t^8.5/(g1^2*g2^5*g3^5*g5^2*y) + (2*g1^3*t^8.56)/(g4*y) + (2*g4*g5^2*t^8.56)/(g1*g2*g3*y) + (g2^3*t^8.65)/(g4*y) + (g3^3*t^8.65)/(g4*y) + (g1^3*g2^3*t^8.65)/(g4*g5^3*y) + (g1^3*g3^3*t^8.65)/(g4*g5^3*y) + (g2^2*g4*t^8.65)/(g1*g3*g5*y) + (g3^2*g4*t^8.65)/(g1*g2*g5*y) + (g2^2*g4*g5^2*t^8.65)/(g1^4*g3*y) + (g3^2*g4*g5^2*t^8.65)/(g1^4*g2*y) - t^8.68/(g1*g2*g3*g4^2*g5^7*y) - t^8.68/(g1^5*g2^2*g3^2*g5^5*y) - (g4^2*t^8.68)/(g1^9*g2^3*g3^3*g5^3*y) + (g1^3*g5^3*t^8.82)/(g2^3*g3^3*y) + (g1^3*t^8.91)/(g2^3*y) + (g1^3*t^8.91)/(g3^3*y) + (g5^3*t^8.91)/(g2^3*y) + (g5^3*t^8.91)/(g3^3*y) - t^8.95/(g1*g2^4*g3^4*g4*g5^4*y) - (g4*t^8.95)/(g1^5*g2^5*g3^5*g5^2*y) - (t^4.6*y)/(g1*g2*g3*g5) - (t^6.64*y)/(g1*g2*g3*g4*g5^4) - (g4*t^6.64*y)/(g1^5*g2^2*g3^2*g5^2) - (t^6.9*y)/(g1*g2^4*g3^4*g5) + (t^7.09*y)/(g1^4*g2*g3*g5^4) + (t^7.35*y)/(g2^3*g3^3*g4*g5^3) + (g4*t^7.35*y)/(g1^4*g2^4*g3^4*g5) + g1*g2*g3*g5*t^7.4*y - (t^7.79*y)/(g1^3*g2^3*g3^3*g5^3) + (t^8.24*y)/(g1^2*g2^2*g3^2*g4*g5^5) + (g4*t^8.24*y)/(g1^6*g2^3*g3^3*g5^3) + (g2^2*g3^2*t^8.29*y)/(g1*g5) + (t^8.5*y)/(g1^2*g2^5*g3^5*g5^2) + (2*g1^3*t^8.56*y)/g4 + (2*g4*g5^2*t^8.56*y)/(g1*g2*g3) + (g2^3*t^8.65*y)/g4 + (g3^3*t^8.65*y)/g4 + (g1^3*g2^3*t^8.65*y)/(g4*g5^3) + (g1^3*g3^3*t^8.65*y)/(g4*g5^3) + (g2^2*g4*t^8.65*y)/(g1*g3*g5) + (g3^2*g4*t^8.65*y)/(g1*g2*g5) + (g2^2*g4*g5^2*t^8.65*y)/(g1^4*g3) + (g3^2*g4*g5^2*t^8.65*y)/(g1^4*g2) - (t^8.68*y)/(g1*g2*g3*g4^2*g5^7) - (t^8.68*y)/(g1^5*g2^2*g3^2*g5^5) - (g4^2*t^8.68*y)/(g1^9*g2^3*g3^3*g5^3) + (g1^3*g5^3*t^8.82*y)/(g2^3*g3^3) + (g1^3*t^8.91*y)/g2^3 + (g1^3*t^8.91*y)/g3^3 + (g5^3*t^8.91*y)/g2^3 + (g5^3*t^8.91*y)/g3^3 - (t^8.95*y)/(g1*g2^4*g3^4*g4*g5^4) - (g4*t^8.95*y)/(g1^5*g2^5*g3^5*g5^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55695 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ | 0.9175 | 1.1389 | 0.8056 | [X:[], M:[0.7232, 0.7232, 0.7232], q:[0.6384, 0.6384, 0.6384], qb:[0.6384, 0.6384, 0.6384], phi:[0.5424]] | 3*t^2.17 + t^3.25 + 12*t^3.83 + 6*t^4.34 + 3*t^5.42 + 21*t^5.46 - t^4.63/y - t^4.63*y | detail | {a: 51103/55696, c: 31717/27848, M1: 128/177, M2: 128/177, M3: 128/177, q1: 113/177, q2: 113/177, q3: 113/177, qb1: 113/177, qb2: 113/177, qb3: 113/177, phi1: 32/59} |