Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55792 SU2adj1nf3 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{2}\tilde{q}_{3}$ + ${ }M_{1}^{2}$ 0.875 1.0999 0.7956 [M:[1.0, 0.6955, 0.6955], q:[0.5, 0.5, 0.6523], qb:[0.6523, 0.6523, 0.6523], phi:[0.5977]] [M:[[0, 0, 0, 0, 0], [0, -4, -4, 0, 0], [0, 0, 0, -4, -4]], q:[[-1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 4, 0, 0], [0, 0, 0, 4, 0], [0, 0, 0, 0, 4]], phi:[[0, -1, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}q_{3}$, ${ }q_{2}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}q_{3}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}q_{3}$, ${ }M_{3}q_{2}q_{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{3}$, ${ }M_{2}q_{2}\tilde{q}_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$ ${}$ -11 2*t^2.086 + t^3. + 8*t^3.457 + t^3.586 + 4*t^3.914 + 3*t^4.173 + 3*t^4.793 + 2*t^5.086 + 8*t^5.25 + 8*t^5.543 + 2*t^5.673 + 10*t^5.707 - 11*t^6. + 4*t^6.259 + t^6.586 + 6*t^6.88 + 34*t^6.914 + 8*t^7.043 + 4*t^7.173 - 3*t^7.207 + 8*t^7.336 + 24*t^7.37 + 4*t^7.5 + 8*t^7.63 - 8*t^7.664 + 3*t^7.759 + 4*t^7.793 + 9*t^7.827 - 16*t^8.086 - 10*t^8.12 + 16*t^8.25 + 5*t^8.346 + 3*t^8.38 + 2*t^8.673 + 52*t^8.707 + 8*t^8.836 + 9*t^8.966 - t^4.793/y - (2*t^6.88)/y + t^7.173/y + t^7.207/y + (2*t^8.086)/y - t^8.38/y + (16*t^8.543)/y + (2*t^8.673)/y + (2*t^8.707)/y - (3*t^8.966)/y - t^4.793*y - 2*t^6.88*y + t^7.173*y + t^7.207*y + 2*t^8.086*y - t^8.38*y + 16*t^8.543*y + 2*t^8.673*y + 2*t^8.707*y - 3*t^8.966*y t^2.086/(g2^4*g3^4) + t^2.086/(g4^4*g5^4) + t^3. + (g2^4*t^3.457)/g1 + g1*g2^4*t^3.457 + (g3^4*t^3.457)/g1 + g1*g3^4*t^3.457 + (g4^4*t^3.457)/g1 + g1*g4^4*t^3.457 + (g5^4*t^3.457)/g1 + g1*g5^4*t^3.457 + t^3.586/(g2^2*g3^2*g4^2*g5^2) + g2^4*g4^4*t^3.914 + g3^4*g4^4*t^3.914 + g2^4*g5^4*t^3.914 + g3^4*g5^4*t^3.914 + t^4.173/(g2^8*g3^8) + t^4.173/(g4^8*g5^8) + t^4.173/(g2^4*g3^4*g4^4*g5^4) + t^4.793/(g2*g3*g4*g5) + t^4.793/(g1^2*g2*g3*g4*g5) + (g1^2*t^4.793)/(g2*g3*g4*g5) + t^5.086/(g2^4*g3^4) + t^5.086/(g4^4*g5^4) + (g2^3*t^5.25)/(g1*g3*g4*g5) + (g1*g2^3*t^5.25)/(g3*g4*g5) + (g3^3*t^5.25)/(g1*g2*g4*g5) + (g1*g3^3*t^5.25)/(g2*g4*g5) + (g4^3*t^5.25)/(g1*g2*g3*g5) + (g1*g4^3*t^5.25)/(g2*g3*g5) + (g5^3*t^5.25)/(g1*g2*g3*g4) + (g1*g5^3*t^5.25)/(g2*g3*g4) + (g4^4*t^5.543)/(g1*g2^4*g3^4) + (g1*g4^4*t^5.543)/(g2^4*g3^4) + (g2^4*t^5.543)/(g1*g4^4*g5^4) + (g1*g2^4*t^5.543)/(g4^4*g5^4) + (g3^4*t^5.543)/(g1*g4^4*g5^4) + (g1*g3^4*t^5.543)/(g4^4*g5^4) + (g5^4*t^5.543)/(g1*g2^4*g3^4) + (g1*g5^4*t^5.543)/(g2^4*g3^4) + t^5.673/(g2^2*g3^2*g4^6*g5^6) + t^5.673/(g2^6*g3^6*g4^2*g5^2) + (g2^7*t^5.707)/(g3*g4*g5) + (g2^3*g3^3*t^5.707)/(g4*g5) + (g3^7*t^5.707)/(g2*g4*g5) + (g2^3*g4^3*t^5.707)/(g3*g5) + (g3^3*g4^3*t^5.707)/(g2*g5) + (g4^7*t^5.707)/(g2*g3*g5) + (g2^3*g5^3*t^5.707)/(g3*g4) + (g3^3*g5^3*t^5.707)/(g2*g4) + (g4^3*g5^3*t^5.707)/(g2*g3) + (g5^7*t^5.707)/(g2*g3*g4) - 5*t^6. - t^6./g1^2 - g1^2*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 + t^6.259/(g2^12*g3^12) + t^6.259/(g4^12*g5^12) + t^6.259/(g2^4*g3^4*g4^8*g5^8) + t^6.259/(g2^8*g3^8*g4^4*g5^4) + t^6.586/(g2^2*g3^2*g4^2*g5^2) + t^6.88/(g2*g3*g4^5*g5^5) + t^6.88/(g1^2*g2*g3*g4^5*g5^5) + (g1^2*t^6.88)/(g2*g3*g4^5*g5^5) + t^6.88/(g2^5*g3^5*g4*g5) + t^6.88/(g1^2*g2^5*g3^5*g4*g5) + (g1^2*t^6.88)/(g2^5*g3^5*g4*g5) + g2^8*t^6.914 + (g2^8*t^6.914)/g1^2 + g1^2*g2^8*t^6.914 + g2^4*g3^4*t^6.914 + (g2^4*g3^4*t^6.914)/g1^2 + g1^2*g2^4*g3^4*t^6.914 + g3^8*t^6.914 + (g3^8*t^6.914)/g1^2 + g1^2*g3^8*t^6.914 + 2*g2^4*g4^4*t^6.914 + (g2^4*g4^4*t^6.914)/g1^2 + g1^2*g2^4*g4^4*t^6.914 + 2*g3^4*g4^4*t^6.914 + (g3^4*g4^4*t^6.914)/g1^2 + g1^2*g3^4*g4^4*t^6.914 + g4^8*t^6.914 + (g4^8*t^6.914)/g1^2 + g1^2*g4^8*t^6.914 + 2*g2^4*g5^4*t^6.914 + (g2^4*g5^4*t^6.914)/g1^2 + g1^2*g2^4*g5^4*t^6.914 + 2*g3^4*g5^4*t^6.914 + (g3^4*g5^4*t^6.914)/g1^2 + g1^2*g3^4*g5^4*t^6.914 + g4^4*g5^4*t^6.914 + (g4^4*g5^4*t^6.914)/g1^2 + g1^2*g4^4*g5^4*t^6.914 + g5^8*t^6.914 + (g5^8*t^6.914)/g1^2 + g1^2*g5^8*t^6.914 + (g2^2*t^7.043)/(g1*g3^2*g4^2*g5^2) + (g1*g2^2*t^7.043)/(g3^2*g4^2*g5^2) + (g3^2*t^7.043)/(g1*g2^2*g4^2*g5^2) + (g1*g3^2*t^7.043)/(g2^2*g4^2*g5^2) + (g4^2*t^7.043)/(g1*g2^2*g3^2*g5^2) + (g1*g4^2*t^7.043)/(g2^2*g3^2*g5^2) + (g5^2*t^7.043)/(g1*g2^2*g3^2*g4^2) + (g1*g5^2*t^7.043)/(g2^2*g3^2*g4^2) + t^7.173/(g2^8*g3^8) + t^7.173/(g4^8*g5^8) + (2*t^7.173)/(g2^4*g3^4*g4^4*g5^4) - g2*g3*g4*g5*t^7.207 - (g2*g3*g4*g5*t^7.207)/g1^2 - g1^2*g2*g3*g4*g5*t^7.207 + (g2^3*t^7.336)/(g1*g3*g4^5*g5^5) + (g1*g2^3*t^7.336)/(g3*g4^5*g5^5) + (g3^3*t^7.336)/(g1*g2*g4^5*g5^5) + (g1*g3^3*t^7.336)/(g2*g4^5*g5^5) + (g4^3*t^7.336)/(g1*g2^5*g3^5*g5) + (g1*g4^3*t^7.336)/(g2^5*g3^5*g5) + (g5^3*t^7.336)/(g1*g2^5*g3^5*g4) + (g1*g5^3*t^7.336)/(g2^5*g3^5*g4) + (g2^8*g4^4*t^7.37)/g1 + g1*g2^8*g4^4*t^7.37 + (g2^4*g3^4*g4^4*t^7.37)/g1 + g1*g2^4*g3^4*g4^4*t^7.37 + (g3^8*g4^4*t^7.37)/g1 + g1*g3^8*g4^4*t^7.37 + (g2^4*g4^8*t^7.37)/g1 + g1*g2^4*g4^8*t^7.37 + (g3^4*g4^8*t^7.37)/g1 + g1*g3^4*g4^8*t^7.37 + (g2^8*g5^4*t^7.37)/g1 + g1*g2^8*g5^4*t^7.37 + (g2^4*g3^4*g5^4*t^7.37)/g1 + g1*g2^4*g3^4*g5^4*t^7.37 + (g3^8*g5^4*t^7.37)/g1 + g1*g3^8*g5^4*t^7.37 + (g2^4*g4^4*g5^4*t^7.37)/g1 + g1*g2^4*g4^4*g5^4*t^7.37 + (g3^4*g4^4*g5^4*t^7.37)/g1 + g1*g3^4*g4^4*g5^4*t^7.37 + (g2^4*g5^8*t^7.37)/g1 + g1*g2^4*g5^8*t^7.37 + (g3^4*g5^8*t^7.37)/g1 + g1*g3^4*g5^8*t^7.37 + (g2^2*g4^2*t^7.5)/(g3^2*g5^2) + (g3^2*g4^2*t^7.5)/(g2^2*g5^2) + (g2^2*g5^2*t^7.5)/(g3^2*g4^2) + (g3^2*g5^2*t^7.5)/(g2^2*g4^2) + (g4^4*t^7.63)/(g1*g2^8*g3^8) + (g1*g4^4*t^7.63)/(g2^8*g3^8) + (g2^4*t^7.63)/(g1*g4^8*g5^8) + (g1*g2^4*t^7.63)/(g4^8*g5^8) + (g3^4*t^7.63)/(g1*g4^8*g5^8) + (g1*g3^4*t^7.63)/(g4^8*g5^8) + (g5^4*t^7.63)/(g1*g2^8*g3^8) + (g1*g5^4*t^7.63)/(g2^8*g3^8) - (g2^5*g3*g4*g5*t^7.664)/g1 - g1*g2^5*g3*g4*g5*t^7.664 - (g2*g3^5*g4*g5*t^7.664)/g1 - g1*g2*g3^5*g4*g5*t^7.664 - (g2*g3*g4^5*g5*t^7.664)/g1 - g1*g2*g3*g4^5*g5*t^7.664 - (g2*g3*g4*g5^5*t^7.664)/g1 - g1*g2*g3*g4*g5^5*t^7.664 + t^7.759/(g2^2*g3^2*g4^10*g5^10) + t^7.759/(g2^6*g3^6*g4^6*g5^6) + t^7.759/(g2^10*g3^10*g4^2*g5^2) + (g2^7*t^7.793)/(g3*g4^5*g5^5) + (g2^3*g3^3*t^7.793)/(g4^5*g5^5) + (g3^7*t^7.793)/(g2*g4^5*g5^5) - (2*t^7.793)/(g2*g3*g4*g5) + (g4^7*t^7.793)/(g2^5*g3^5*g5) + (g4^3*g5^3*t^7.793)/(g2^5*g3^5) + (g5^7*t^7.793)/(g2^5*g3^5*g4) + g2^8*g4^8*t^7.827 + g2^4*g3^4*g4^8*t^7.827 + g3^8*g4^8*t^7.827 + g2^8*g4^4*g5^4*t^7.827 + g2^4*g3^4*g4^4*g5^4*t^7.827 + g3^8*g4^4*g5^4*t^7.827 + g2^8*g5^8*t^7.827 + g2^4*g3^4*g5^8*t^7.827 + g3^8*g5^8*t^7.827 - (4*t^8.086)/(g2^4*g3^4) - t^8.086/(g1^2*g2^4*g3^4) - (g1^2*t^8.086)/(g2^4*g3^4) - (4*t^8.086)/(g4^4*g5^4) - t^8.086/(g1^2*g4^4*g5^4) - (g1^2*t^8.086)/(g4^4*g5^4) - (g2^4*t^8.086)/(g3^4*g4^4*g5^4) - (g3^4*t^8.086)/(g2^4*g4^4*g5^4) - (g4^4*t^8.086)/(g2^4*g3^4*g5^4) - (g5^4*t^8.086)/(g2^4*g3^4*g4^4) - g2^9*g3*g4*g5*t^8.12 - g2^5*g3^5*g4*g5*t^8.12 - g2*g3^9*g4*g5*t^8.12 - g2^5*g3*g4^5*g5*t^8.12 - g2*g3^5*g4^5*g5*t^8.12 - g2*g3*g4^9*g5*t^8.12 - g2^5*g3*g4*g5^5*t^8.12 - g2*g3^5*g4*g5^5*t^8.12 - g2*g3*g4^5*g5^5*t^8.12 - g2*g3*g4*g5^9*t^8.12 + (g2^3*t^8.25)/(g1^3*g3*g4*g5) + (g2^3*t^8.25)/(g1*g3*g4*g5) + (g1*g2^3*t^8.25)/(g3*g4*g5) + (g1^3*g2^3*t^8.25)/(g3*g4*g5) + (g3^3*t^8.25)/(g1^3*g2*g4*g5) + (g3^3*t^8.25)/(g1*g2*g4*g5) + (g1*g3^3*t^8.25)/(g2*g4*g5) + (g1^3*g3^3*t^8.25)/(g2*g4*g5) + (g4^3*t^8.25)/(g1^3*g2*g3*g5) + (g4^3*t^8.25)/(g1*g2*g3*g5) + (g1*g4^3*t^8.25)/(g2*g3*g5) + (g1^3*g4^3*t^8.25)/(g2*g3*g5) + (g5^3*t^8.25)/(g1^3*g2*g3*g4) + (g5^3*t^8.25)/(g1*g2*g3*g4) + (g1*g5^3*t^8.25)/(g2*g3*g4) + (g1^3*g5^3*t^8.25)/(g2*g3*g4) + t^8.346/(g2^16*g3^16) + t^8.346/(g4^16*g5^16) + t^8.346/(g2^4*g3^4*g4^12*g5^12) + t^8.346/(g2^8*g3^8*g4^8*g5^8) + t^8.346/(g2^12*g3^12*g4^4*g5^4) + t^8.38/(g2^3*g3^3*g4^3*g5^3) + t^8.38/(g1^2*g2^3*g3^3*g4^3*g5^3) + (g1^2*t^8.38)/(g2^3*g3^3*g4^3*g5^3) + t^8.673/(g2^2*g3^2*g4^6*g5^6) + t^8.673/(g2^6*g3^6*g4^2*g5^2) + (2*g2^7*t^8.707)/(g3*g4*g5) + (g2^7*t^8.707)/(g1^2*g3*g4*g5) + (g1^2*g2^7*t^8.707)/(g3*g4*g5) + (2*g2^3*g3^3*t^8.707)/(g4*g5) + (g2^3*g3^3*t^8.707)/(g1^2*g4*g5) + (g1^2*g2^3*g3^3*t^8.707)/(g4*g5) + (2*g3^7*t^8.707)/(g2*g4*g5) + (g3^7*t^8.707)/(g1^2*g2*g4*g5) + (g1^2*g3^7*t^8.707)/(g2*g4*g5) + (3*g2^3*g4^3*t^8.707)/(g3*g5) + (2*g2^3*g4^3*t^8.707)/(g1^2*g3*g5) + (2*g1^2*g2^3*g4^3*t^8.707)/(g3*g5) + (3*g3^3*g4^3*t^8.707)/(g2*g5) + (2*g3^3*g4^3*t^8.707)/(g1^2*g2*g5) + (2*g1^2*g3^3*g4^3*t^8.707)/(g2*g5) + (2*g4^7*t^8.707)/(g2*g3*g5) + (g4^7*t^8.707)/(g1^2*g2*g3*g5) + (g1^2*g4^7*t^8.707)/(g2*g3*g5) + (3*g2^3*g5^3*t^8.707)/(g3*g4) + (2*g2^3*g5^3*t^8.707)/(g1^2*g3*g4) + (2*g1^2*g2^3*g5^3*t^8.707)/(g3*g4) + (3*g3^3*g5^3*t^8.707)/(g2*g4) + (2*g3^3*g5^3*t^8.707)/(g1^2*g2*g4) + (2*g1^2*g3^3*g5^3*t^8.707)/(g2*g4) + (2*g4^3*g5^3*t^8.707)/(g2*g3) + (g4^3*g5^3*t^8.707)/(g1^2*g2*g3) + (g1^2*g4^3*g5^3*t^8.707)/(g2*g3) + (2*g5^7*t^8.707)/(g2*g3*g4) + (g5^7*t^8.707)/(g1^2*g2*g3*g4) + (g1^2*g5^7*t^8.707)/(g2*g3*g4) + (g2*t^8.836)/(g1*g3^3*g4^3*g5^3) + (g1*g2*t^8.836)/(g3^3*g4^3*g5^3) + (g3*t^8.836)/(g1*g2^3*g4^3*g5^3) + (g1*g3*t^8.836)/(g2^3*g4^3*g5^3) + (g4*t^8.836)/(g1*g2^3*g3^3*g5^3) + (g1*g4*t^8.836)/(g2^3*g3^3*g5^3) + (g5*t^8.836)/(g1*g2^3*g3^3*g4^3) + (g1*g5*t^8.836)/(g2^3*g3^3*g4^3) + t^8.966/(g2*g3*g4^9*g5^9) + t^8.966/(g1^2*g2*g3*g4^9*g5^9) + (g1^2*t^8.966)/(g2*g3*g4^9*g5^9) + t^8.966/(g2^5*g3^5*g4^5*g5^5) + t^8.966/(g1^2*g2^5*g3^5*g4^5*g5^5) + (g1^2*t^8.966)/(g2^5*g3^5*g4^5*g5^5) + t^8.966/(g2^9*g3^9*g4*g5) + t^8.966/(g1^2*g2^9*g3^9*g4*g5) + (g1^2*t^8.966)/(g2^9*g3^9*g4*g5) - t^4.793/(g2*g3*g4*g5*y) - t^6.88/(g2*g3*g4^5*g5^5*y) - t^6.88/(g2^5*g3^5*g4*g5*y) + t^7.173/(g2^4*g3^4*g4^4*g5^4*y) + (g2*g3*g4*g5*t^7.207)/y + t^8.086/(g2^4*g3^4*y) + t^8.086/(g4^4*g5^4*y) - t^8.38/(g2^3*g3^3*g4^3*g5^3*y) + t^8.543/(g1*g2^4*y) + (g1*t^8.543)/(g2^4*y) + t^8.543/(g1*g3^4*y) + (g1*t^8.543)/(g3^4*y) + t^8.543/(g1*g4^4*y) + (g1*t^8.543)/(g4^4*y) + (g4^4*t^8.543)/(g1*g2^4*g3^4*y) + (g1*g4^4*t^8.543)/(g2^4*g3^4*y) + t^8.543/(g1*g5^4*y) + (g1*t^8.543)/(g5^4*y) + (g2^4*t^8.543)/(g1*g4^4*g5^4*y) + (g1*g2^4*t^8.543)/(g4^4*g5^4*y) + (g3^4*t^8.543)/(g1*g4^4*g5^4*y) + (g1*g3^4*t^8.543)/(g4^4*g5^4*y) + (g5^4*t^8.543)/(g1*g2^4*g3^4*y) + (g1*g5^4*t^8.543)/(g2^4*g3^4*y) + t^8.673/(g2^2*g3^2*g4^6*g5^6*y) + t^8.673/(g2^6*g3^6*g4^2*g5^2*y) + (g2^3*g3^3*t^8.707)/(g4*g5*y) + (g4^3*g5^3*t^8.707)/(g2*g3*y) - t^8.966/(g2*g3*g4^9*g5^9*y) - t^8.966/(g2^5*g3^5*g4^5*g5^5*y) - t^8.966/(g2^9*g3^9*g4*g5*y) - (t^4.793*y)/(g2*g3*g4*g5) - (t^6.88*y)/(g2*g3*g4^5*g5^5) - (t^6.88*y)/(g2^5*g3^5*g4*g5) + (t^7.173*y)/(g2^4*g3^4*g4^4*g5^4) + g2*g3*g4*g5*t^7.207*y + (t^8.086*y)/(g2^4*g3^4) + (t^8.086*y)/(g4^4*g5^4) - (t^8.38*y)/(g2^3*g3^3*g4^3*g5^3) + (t^8.543*y)/(g1*g2^4) + (g1*t^8.543*y)/g2^4 + (t^8.543*y)/(g1*g3^4) + (g1*t^8.543*y)/g3^4 + (t^8.543*y)/(g1*g4^4) + (g1*t^8.543*y)/g4^4 + (g4^4*t^8.543*y)/(g1*g2^4*g3^4) + (g1*g4^4*t^8.543*y)/(g2^4*g3^4) + (t^8.543*y)/(g1*g5^4) + (g1*t^8.543*y)/g5^4 + (g2^4*t^8.543*y)/(g1*g4^4*g5^4) + (g1*g2^4*t^8.543*y)/(g4^4*g5^4) + (g3^4*t^8.543*y)/(g1*g4^4*g5^4) + (g1*g3^4*t^8.543*y)/(g4^4*g5^4) + (g5^4*t^8.543*y)/(g1*g2^4*g3^4) + (g1*g5^4*t^8.543*y)/(g2^4*g3^4) + (t^8.673*y)/(g2^2*g3^2*g4^6*g5^6) + (t^8.673*y)/(g2^6*g3^6*g4^2*g5^2) + (g2^3*g3^3*t^8.707*y)/(g4*g5) + (g4^3*g5^3*t^8.707*y)/(g2*g3) - (t^8.966*y)/(g2*g3*g4^9*g5^9) - (t^8.966*y)/(g2^5*g3^5*g4^5*g5^5) - (t^8.966*y)/(g2^9*g3^9*g4*g5)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55695 SU2adj1nf3 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{2}\tilde{q}_{3}$ 0.9175 1.1389 0.8056 [M:[0.7232, 0.7232, 0.7232], q:[0.6384, 0.6384, 0.6384], qb:[0.6384, 0.6384, 0.6384], phi:[0.5424]] 3*t^2.169 + t^3.254 + 12*t^3.831 + 6*t^4.339 + 3*t^5.424 + 21*t^5.458 - t^4.627/y - t^4.627*y detail {a: 51103/55696, c: 31717/27848, M1: 128/177, M2: 128/177, M3: 128/177, q1: 113/177, q2: 113/177, q3: 113/177, qb1: 113/177, qb2: 113/177, qb3: 113/177, phi1: 32/59}