Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55757 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ + $ M_1\phi_1^2$ | 0.9086 | 1.1324 | 0.8023 | [X:[], M:[0.8361, 0.7458, 0.7458], q:[0.5819, 0.5819, 0.6271], qb:[0.6271, 0.6271, 0.6271], phi:[0.5819]] | [X:[], M:[[0, 2, 2, 2, 2], [0, -6, -6, 0, 0], [0, 0, 0, -6, -6]], q:[[-1, -2, -2, -2, -2], [1, 0, 0, 0, 0], [0, 6, 0, 0, 0]], qb:[[0, 0, 6, 0, 0], [0, 0, 0, 6, 0], [0, 0, 0, 0, 6]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_3$, $ M_1$, $ \phi_1^2$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_2q_2\tilde{q}_2$, $ M_3q_1q_3$ | . | -11 | 2*t^2.24 + t^2.51 + t^3.49 + 8*t^3.63 + 4*t^3.76 + 3*t^4.47 + 2*t^4.75 + t^5.02 + 3*t^5.24 + 8*t^5.37 + 10*t^5.51 + 2*t^5.73 + 8*t^5.86 - 11*t^6. + 4*t^6.27 + 4*t^6.71 + 4*t^6.98 + 8*t^7.12 + 36*t^7.25 + 24*t^7.39 + 6*t^7.47 + 10*t^7.53 + 8*t^7.61 + t^7.75 - 8*t^7.88 + 3*t^7.97 + 8*t^8.1 - 16*t^8.24 - 8*t^8.51 + 3*t^8.73 + 4*t^8.78 + 24*t^8.86 + 5*t^8.95 - t^4.75/y - (2*t^6.98)/y + t^7.47/y + (2*t^7.75)/y + (2*t^8.51)/y + (2*t^8.73)/y + (16*t^8.86)/y - t^4.75*y - 2*t^6.98*y + t^7.47*y + 2*t^7.75*y + 2*t^8.51*y + 2*t^8.73*y + 16*t^8.86*y | t^2.24/(g2^6*g3^6) + t^2.24/(g4^6*g5^6) + g2^2*g3^2*g4^2*g5^2*t^2.51 + t^3.49/(g2^2*g3^2*g4^2*g5^2) + g1*g2^6*t^3.63 + g1*g3^6*t^3.63 + g1*g4^6*t^3.63 + (g2^4*t^3.63)/(g1*g3^2*g4^2*g5^2) + (g3^4*t^3.63)/(g1*g2^2*g4^2*g5^2) + (g4^4*t^3.63)/(g1*g2^2*g3^2*g5^2) + (g5^4*t^3.63)/(g1*g2^2*g3^2*g4^2) + g1*g5^6*t^3.63 + g2^6*g4^6*t^3.76 + g3^6*g4^6*t^3.76 + g2^6*g5^6*t^3.76 + g3^6*g5^6*t^3.76 + t^4.47/(g2^12*g3^12) + t^4.47/(g4^12*g5^12) + t^4.47/(g2^6*g3^6*g4^6*g5^6) + (g2^2*g3^2*t^4.75)/(g4^4*g5^4) + (g4^2*g5^2*t^4.75)/(g2^4*g3^4) + g2^4*g3^4*g4^4*g5^4*t^5.02 + t^5.24/(g1^2*g2^5*g3^5*g4^5*g5^5) + t^5.24/(g2^3*g3^3*g4^3*g5^3) + (g1^2*t^5.24)/(g2*g3*g4*g5) + (g2^3*t^5.37)/(g1*g3^3*g4^3*g5^3) + (g3^3*t^5.37)/(g1*g2^3*g4^3*g5^3) + (g4^3*t^5.37)/(g1*g2^3*g3^3*g5^3) + (g1*g2^5*t^5.37)/(g3*g4*g5) + (g1*g3^5*t^5.37)/(g2*g4*g5) + (g1*g4^5*t^5.37)/(g2*g3*g5) + (g5^3*t^5.37)/(g1*g2^3*g3^3*g4^3) + (g1*g5^5*t^5.37)/(g2*g3*g4) + (g2^11*t^5.51)/(g3*g4*g5) + (g2^5*g3^5*t^5.51)/(g4*g5) + (g3^11*t^5.51)/(g2*g4*g5) + (g2^5*g4^5*t^5.51)/(g3*g5) + (g3^5*g4^5*t^5.51)/(g2*g5) + (g4^11*t^5.51)/(g2*g3*g5) + (g2^5*g5^5*t^5.51)/(g3*g4) + (g3^5*g5^5*t^5.51)/(g2*g4) + (g4^5*g5^5*t^5.51)/(g2*g3) + (g5^11*t^5.51)/(g2*g3*g4) + t^5.73/(g2^2*g3^2*g4^8*g5^8) + t^5.73/(g2^8*g3^8*g4^2*g5^2) + (g1*g4^6*t^5.86)/(g2^6*g3^6) + (g2^4*t^5.86)/(g1*g3^2*g4^8*g5^8) + (g3^4*t^5.86)/(g1*g2^2*g4^8*g5^8) + (g1*g2^6*t^5.86)/(g4^6*g5^6) + (g1*g3^6*t^5.86)/(g4^6*g5^6) + (g4^4*t^5.86)/(g1*g2^8*g3^8*g5^2) + (g5^4*t^5.86)/(g1*g2^8*g3^8*g4^2) + (g1*g5^6*t^5.86)/(g2^6*g3^6) - 5*t^6. - (g2^6*t^6.)/g3^6 - (g3^6*t^6.)/g2^6 - (g4^6*t^6.)/g5^6 - t^6./(g1^2*g2^2*g3^2*g4^2*g5^2) - g1^2*g2^2*g3^2*g4^2*g5^2*t^6. - (g5^6*t^6.)/g4^6 + g2^8*g3^2*g4^8*g5^2*t^6.27 + g2^2*g3^8*g4^8*g5^2*t^6.27 + g2^8*g3^2*g4^2*g5^8*t^6.27 + g2^2*g3^8*g4^2*g5^8*t^6.27 + t^6.71/(g2^18*g3^18) + t^6.71/(g4^18*g5^18) + t^6.71/(g2^6*g3^6*g4^12*g5^12) + t^6.71/(g2^12*g3^12*g4^6*g5^6) + (g2^2*g3^2*t^6.98)/(g4^10*g5^10) + (2*t^6.98)/(g2^4*g3^4*g4^4*g5^4) + (g4^2*g5^2*t^6.98)/(g2^10*g3^10) + (g2^2*t^7.12)/(g1*g3^4*g4^4*g5^4) + (g3^2*t^7.12)/(g1*g2^4*g4^4*g5^4) + (g4^2*t^7.12)/(g1*g2^4*g3^4*g5^4) + (g1*g2^4*t^7.12)/(g3^2*g4^2*g5^2) + (g1*g3^4*t^7.12)/(g2^2*g4^2*g5^2) + (g1*g4^4*t^7.12)/(g2^2*g3^2*g5^2) + (g5^2*t^7.12)/(g1*g2^4*g3^4*g4^4) + (g1*g5^4*t^7.12)/(g2^2*g3^2*g4^2) + g1^2*g2^12*t^7.25 + g1^2*g2^6*g3^6*t^7.25 + g1^2*g3^12*t^7.25 + g1^2*g2^6*g4^6*t^7.25 + g1^2*g3^6*g4^6*t^7.25 + g1^2*g4^12*t^7.25 + (g2^8*t^7.25)/(g1^2*g3^4*g4^4*g5^4) + (g2^2*g3^2*t^7.25)/(g1^2*g4^4*g5^4) + (g3^8*t^7.25)/(g1^2*g2^4*g4^4*g5^4) + (g2^2*g4^2*t^7.25)/(g1^2*g3^4*g5^4) + (g3^2*g4^2*t^7.25)/(g1^2*g2^4*g5^4) + (g4^8*t^7.25)/(g1^2*g2^4*g3^4*g5^4) + (g2^10*t^7.25)/(g3^2*g4^2*g5^2) + (2*g2^4*g3^4*t^7.25)/(g4^2*g5^2) + (g3^10*t^7.25)/(g2^2*g4^2*g5^2) + (2*g2^4*g4^4*t^7.25)/(g3^2*g5^2) + (2*g3^4*g4^4*t^7.25)/(g2^2*g5^2) + (g4^10*t^7.25)/(g2^2*g3^2*g5^2) + (g2^2*g5^2*t^7.25)/(g1^2*g3^4*g4^4) + (g3^2*g5^2*t^7.25)/(g1^2*g2^4*g4^4) + (g4^2*g5^2*t^7.25)/(g1^2*g2^4*g3^4) + (2*g2^4*g5^4*t^7.25)/(g3^2*g4^2) + (2*g3^4*g5^4*t^7.25)/(g2^2*g4^2) + (2*g4^4*g5^4*t^7.25)/(g2^2*g3^2) + g1^2*g2^6*g5^6*t^7.25 + g1^2*g3^6*g5^6*t^7.25 + g1^2*g4^6*g5^6*t^7.25 + (g5^8*t^7.25)/(g1^2*g2^4*g3^4*g4^4) + (g5^10*t^7.25)/(g2^2*g3^2*g4^2) + g1^2*g5^12*t^7.25 + g1*g2^12*g4^6*t^7.39 + g1*g2^6*g3^6*g4^6*t^7.39 + g1*g3^12*g4^6*t^7.39 + g1*g2^6*g4^12*t^7.39 + g1*g3^6*g4^12*t^7.39 + (g2^10*g4^4*t^7.39)/(g1*g3^2*g5^2) + (g2^4*g3^4*g4^4*t^7.39)/(g1*g5^2) + (g3^10*g4^4*t^7.39)/(g1*g2^2*g5^2) + (g2^4*g4^10*t^7.39)/(g1*g3^2*g5^2) + (g3^4*g4^10*t^7.39)/(g1*g2^2*g5^2) + (g2^10*g5^4*t^7.39)/(g1*g3^2*g4^2) + (g2^4*g3^4*g5^4*t^7.39)/(g1*g4^2) + (g3^10*g5^4*t^7.39)/(g1*g2^2*g4^2) + (g2^4*g4^4*g5^4*t^7.39)/(g1*g3^2) + (g3^4*g4^4*g5^4*t^7.39)/(g1*g2^2) + g1*g2^12*g5^6*t^7.39 + g1*g2^6*g3^6*g5^6*t^7.39 + g1*g3^12*g5^6*t^7.39 + g1*g2^6*g4^6*g5^6*t^7.39 + g1*g3^6*g4^6*g5^6*t^7.39 + (g2^4*g5^10*t^7.39)/(g1*g3^2*g4^2) + (g3^4*g5^10*t^7.39)/(g1*g2^2*g4^2) + g1*g2^6*g5^12*t^7.39 + g1*g3^6*g5^12*t^7.39 + t^7.47/(g1^2*g2^5*g3^5*g4^11*g5^11) + t^7.47/(g2^3*g3^3*g4^9*g5^9) + (g1^2*t^7.47)/(g2*g3*g4^7*g5^7) + t^7.47/(g1^2*g2^11*g3^11*g4^5*g5^5) + t^7.47/(g2^9*g3^9*g4^3*g5^3) + (g1^2*t^7.47)/(g2^7*g3^7*g4*g5) + g2^12*g4^12*t^7.53 + g2^6*g3^6*g4^12*t^7.53 + g3^12*g4^12*t^7.53 + g2^12*g4^6*g5^6*t^7.53 + 2*g2^6*g3^6*g4^6*g5^6*t^7.53 + g3^12*g4^6*g5^6*t^7.53 + g2^12*g5^12*t^7.53 + g2^6*g3^6*g5^12*t^7.53 + g3^12*g5^12*t^7.53 + (g2^3*t^7.61)/(g1*g3^3*g4^9*g5^9) + (g3^3*t^7.61)/(g1*g2^3*g4^9*g5^9) + (g1*g2^5*t^7.61)/(g3*g4^7*g5^7) + (g1*g3^5*t^7.61)/(g2*g4^7*g5^7) + (g4^3*t^7.61)/(g1*g2^9*g3^9*g5^3) + (g1*g4^5*t^7.61)/(g2^7*g3^7*g5) + (g5^3*t^7.61)/(g1*g2^9*g3^9*g4^3) + (g1*g5^5*t^7.61)/(g2^7*g3^7*g4) + (g2^11*t^7.75)/(g3*g4^7*g5^7) + (g2^5*g3^5*t^7.75)/(g4^7*g5^7) + (g3^11*t^7.75)/(g2*g4^7*g5^7) - t^7.75/(g1^2*g2^3*g3^3*g4^3*g5^3) - (3*t^7.75)/(g2*g3*g4*g5) + (g4^11*t^7.75)/(g2^7*g3^7*g5) - g1^2*g2*g3*g4*g5*t^7.75 + (g4^5*g5^5*t^7.75)/(g2^7*g3^7) + (g5^11*t^7.75)/(g2^7*g3^7*g4) - (g2^5*t^7.88)/(g1*g3*g4*g5) - (g3^5*t^7.88)/(g1*g2*g4*g5) - (g4^5*t^7.88)/(g1*g2*g3*g5) - g1*g2^7*g3*g4*g5*t^7.88 - g1*g2*g3^7*g4*g5*t^7.88 - g1*g2*g3*g4^7*g5*t^7.88 - (g5^5*t^7.88)/(g1*g2*g3*g4) - g1*g2*g3*g4*g5^7*t^7.88 + t^7.97/(g2^2*g3^2*g4^14*g5^14) + t^7.97/(g2^8*g3^8*g4^8*g5^8) + t^7.97/(g2^14*g3^14*g4^2*g5^2) + (g1*g4^6*t^8.1)/(g2^12*g3^12) + (g2^4*t^8.1)/(g1*g3^2*g4^14*g5^14) + (g3^4*t^8.1)/(g1*g2^2*g4^14*g5^14) + (g1*g2^6*t^8.1)/(g4^12*g5^12) + (g1*g3^6*t^8.1)/(g4^12*g5^12) + (g4^4*t^8.1)/(g1*g2^14*g3^14*g5^2) + (g5^4*t^8.1)/(g1*g2^14*g3^14*g4^2) + (g1*g5^6*t^8.1)/(g2^12*g3^12) - (4*t^8.24)/(g2^6*g3^6) - t^8.24/(g1^2*g2^2*g3^2*g4^8*g5^8) - (4*t^8.24)/(g4^6*g5^6) - (g2^6*t^8.24)/(g3^6*g4^6*g5^6) - (g3^6*t^8.24)/(g2^6*g4^6*g5^6) - (g4^6*t^8.24)/(g2^6*g3^6*g5^6) - (g1^2*g2^2*g3^2*t^8.24)/(g4^4*g5^4) - t^8.24/(g1^2*g2^8*g3^8*g4^2*g5^2) - (g1^2*g4^2*g5^2*t^8.24)/(g2^4*g3^4) - (g5^6*t^8.24)/(g2^6*g3^6*g4^6) - (g2^2*g3^2*g4^8*t^8.51)/g5^4 - (g2^8*g4^2*g5^2*t^8.51)/g3^4 - 4*g2^2*g3^2*g4^2*g5^2*t^8.51 - (g3^8*g4^2*g5^2*t^8.51)/g2^4 - (g2^2*g3^2*g5^8*t^8.51)/g4^4 + t^8.73/(g1^2*g2^7*g3^7*g4^7*g5^7) + t^8.73/(g2^5*g3^5*g4^5*g5^5) + (g1^2*t^8.73)/(g2^3*g3^3*g4^3*g5^3) + g2^10*g3^4*g4^10*g5^4*t^8.78 + g2^4*g3^10*g4^10*g5^4*t^8.78 + g2^10*g3^4*g4^4*g5^10*t^8.78 + g2^4*g3^10*g4^4*g5^10*t^8.78 + t^8.86/(g1^3*g2*g3^7*g4^7*g5^7) + t^8.86/(g1^3*g2^7*g3*g4^7*g5^7) + t^8.86/(g1^3*g2^7*g3^7*g4*g5^7) + (2*g2*t^8.86)/(g1*g3^5*g4^5*g5^5) + (2*g3*t^8.86)/(g1*g2^5*g4^5*g5^5) + (2*g4*t^8.86)/(g1*g2^5*g3^5*g5^5) + (2*g1*g2^3*t^8.86)/(g3^3*g4^3*g5^3) + (2*g1*g3^3*t^8.86)/(g2^3*g4^3*g5^3) + (2*g1*g4^3*t^8.86)/(g2^3*g3^3*g5^3) + t^8.86/(g1^3*g2^7*g3^7*g4^7*g5) + (g1^3*g2^5*t^8.86)/(g3*g4*g5) + (g1^3*g3^5*t^8.86)/(g2*g4*g5) + (g1^3*g4^5*t^8.86)/(g2*g3*g5) + (2*g5*t^8.86)/(g1*g2^5*g3^5*g4^5) + (2*g1*g5^3*t^8.86)/(g2^3*g3^3*g4^3) + (g1^3*g5^5*t^8.86)/(g2*g3*g4) + t^8.95/(g2^24*g3^24) + t^8.95/(g4^24*g5^24) + t^8.95/(g2^6*g3^6*g4^18*g5^18) + t^8.95/(g2^12*g3^12*g4^12*g5^12) + t^8.95/(g2^18*g3^18*g4^6*g5^6) - t^4.75/(g2*g3*g4*g5*y) - t^6.98/(g2*g3*g4^7*g5^7*y) - t^6.98/(g2^7*g3^7*g4*g5*y) + t^7.47/(g2^6*g3^6*g4^6*g5^6*y) + (g2^2*g3^2*t^7.75)/(g4^4*g5^4*y) + (g4^2*g5^2*t^7.75)/(g2^4*g3^4*y) + (g2^5*g3^5*t^8.51)/(g4*g5*y) + (g4^5*g5^5*t^8.51)/(g2*g3*y) + t^8.73/(g2^2*g3^2*g4^8*g5^8*y) + t^8.73/(g2^8*g3^8*g4^2*g5^2*y) + (g1*t^8.86)/(g2^6*y) + (g1*t^8.86)/(g3^6*y) + (g1*t^8.86)/(g4^6*y) + (g1*g4^6*t^8.86)/(g2^6*g3^6*y) + (g2^4*t^8.86)/(g1*g3^2*g4^8*g5^8*y) + (g3^4*t^8.86)/(g1*g2^2*g4^8*g5^8*y) + t^8.86/(g1*g2^2*g3^2*g4^2*g5^8*y) + (g1*t^8.86)/(g5^6*y) + (g1*g2^6*t^8.86)/(g4^6*g5^6*y) + (g1*g3^6*t^8.86)/(g4^6*g5^6*y) + t^8.86/(g1*g2^2*g3^2*g4^8*g5^2*y) + t^8.86/(g1*g2^2*g3^8*g4^2*g5^2*y) + t^8.86/(g1*g2^8*g3^2*g4^2*g5^2*y) + (g4^4*t^8.86)/(g1*g2^8*g3^8*g5^2*y) + (g5^4*t^8.86)/(g1*g2^8*g3^8*g4^2*y) + (g1*g5^6*t^8.86)/(g2^6*g3^6*y) - (t^4.75*y)/(g2*g3*g4*g5) - (t^6.98*y)/(g2*g3*g4^7*g5^7) - (t^6.98*y)/(g2^7*g3^7*g4*g5) + (t^7.47*y)/(g2^6*g3^6*g4^6*g5^6) + (g2^2*g3^2*t^7.75*y)/(g4^4*g5^4) + (g4^2*g5^2*t^7.75*y)/(g2^4*g3^4) + (g2^5*g3^5*t^8.51*y)/(g4*g5) + (g4^5*g5^5*t^8.51*y)/(g2*g3) + (t^8.73*y)/(g2^2*g3^2*g4^8*g5^8) + (t^8.73*y)/(g2^8*g3^8*g4^2*g5^2) + (g1*t^8.86*y)/g2^6 + (g1*t^8.86*y)/g3^6 + (g1*t^8.86*y)/g4^6 + (g1*g4^6*t^8.86*y)/(g2^6*g3^6) + (g2^4*t^8.86*y)/(g1*g3^2*g4^8*g5^8) + (g3^4*t^8.86*y)/(g1*g2^2*g4^8*g5^8) + (t^8.86*y)/(g1*g2^2*g3^2*g4^2*g5^8) + (g1*t^8.86*y)/g5^6 + (g1*g2^6*t^8.86*y)/(g4^6*g5^6) + (g1*g3^6*t^8.86*y)/(g4^6*g5^6) + (t^8.86*y)/(g1*g2^2*g3^2*g4^8*g5^2) + (t^8.86*y)/(g1*g2^2*g3^8*g4^2*g5^2) + (t^8.86*y)/(g1*g2^8*g3^2*g4^2*g5^2) + (g4^4*t^8.86*y)/(g1*g2^8*g3^8*g5^2) + (g5^4*t^8.86*y)/(g1*g2^8*g3^8*g4^2) + (g1*g5^6*t^8.86*y)/(g2^6*g3^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55695 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ | 0.9175 | 1.1389 | 0.8056 | [X:[], M:[0.7232, 0.7232, 0.7232], q:[0.6384, 0.6384, 0.6384], qb:[0.6384, 0.6384, 0.6384], phi:[0.5424]] | 3*t^2.17 + t^3.25 + 12*t^3.83 + 6*t^4.34 + 3*t^5.42 + 21*t^5.46 - t^4.63/y - t^4.63*y | detail | {a: 51103/55696, c: 31717/27848, M1: 128/177, M2: 128/177, M3: 128/177, q1: 113/177, q2: 113/177, q3: 113/177, qb1: 113/177, qb2: 113/177, qb3: 113/177, phi1: 32/59} |