Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55686 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ | 0.8857 | 1.0964 | 0.8078 | [X:[], M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] | [X:[], M:[[4, 4, 4, 4, 4], [-8, -1, -1, -1, -1]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1q_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2q_3$, $ \phi_1q_2^2$, $ M_2q_3\tilde{q}_1$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_2q_3$, $ M_2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$ | . | -17 | t^2.07 + t^2.52 + 6*t^3.55 + 4*t^3.58 + 4*t^3.91 + t^4.13 + t^4.59 + t^5.04 + 10*t^5.29 + 4*t^5.32 + t^5.35 + 6*t^5.62 + 4*t^5.65 - 17*t^6. - 4*t^6.03 + 6*t^6.07 + 4*t^6.1 + t^6.2 - t^6.33 - 4*t^6.35 + 4*t^6.43 + t^6.65 + 21*t^7.11 + 20*t^7.13 + 10*t^7.16 + 10*t^7.36 + 20*t^7.46 + 10*t^7.49 + t^7.56 + 6*t^7.69 - 16*t^7.74 - 4*t^7.77 + 10*t^7.81 - 17*t^8.07 - 4*t^8.09 + 6*t^8.14 - t^8.19 + t^8.27 + 10*t^8.45 - 18*t^8.52 - 4*t^8.55 + 6*t^8.59 + 4*t^8.62 + t^8.72 + 44*t^8.85 + 36*t^8.87 + 16*t^8.9 + 4*t^8.93 + 4*t^8.95 - t^4.74/y - t^6.81/y + t^7.59/y + (6*t^8.62)/y + (4*t^8.65)/y + t^8.67/y - t^8.87/y + (4*t^8.97)/y - t^4.74*y - t^6.81*y + t^7.59*y + 6*t^8.62*y + 4*t^8.65*y + t^8.67*y - t^8.87*y + 4*t^8.97*y | t^2.07/(g1^8*g2*g3*g4*g5) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.52 + g2^7*g3^7*t^3.55 + g2^7*g4^7*t^3.55 + g3^7*g4^7*t^3.55 + g2^7*g5^7*t^3.55 + g3^7*g5^7*t^3.55 + g4^7*g5^7*t^3.55 + g1^7*g2^7*t^3.58 + g1^7*g3^7*t^3.58 + g1^7*g4^7*t^3.58 + g1^7*g5^7*t^3.58 + g1*g2^8*g3*g4*g5*t^3.91 + g1*g2*g3^8*g4*g5*t^3.91 + g1*g2*g3*g4^8*g5*t^3.91 + g1*g2*g3*g4*g5^8*t^3.91 + t^4.13/(g1^16*g2^2*g3^2*g4^2*g5^2) + (g2^3*g3^3*g4^3*g5^3*t^4.59)/g1^4 + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.04 + (g2^12*t^5.29)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.29)/(g1^2*g4^2*g5^2) + (g3^12*t^5.29)/(g1^2*g2^2*g4^2*g5^2) + (g2^5*g4^5*t^5.29)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.29)/(g1^2*g2^2*g5^2) + (g4^12*t^5.29)/(g1^2*g2^2*g3^2*g5^2) + (g2^5*g5^5*t^5.29)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.29)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.29)/(g1^2*g2^2*g3^2) + (g5^12*t^5.29)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g2^5*t^5.32)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.32)/(g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.32)/(g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.32)/(g2^2*g3^2*g4^2) + (g1^12*t^5.35)/(g2^2*g3^2*g4^2*g5^2) + (g2^6*g3^6*t^5.62)/(g1^8*g4*g5) + (g2^6*g4^6*t^5.62)/(g1^8*g3*g5) + (g3^6*g4^6*t^5.62)/(g1^8*g2*g5) + (g2^6*g5^6*t^5.62)/(g1^8*g3*g4) + (g3^6*g5^6*t^5.62)/(g1^8*g2*g4) + (g4^6*g5^6*t^5.62)/(g1^8*g2*g3) + (g2^6*t^5.65)/(g1*g3*g4*g5) + (g3^6*t^5.65)/(g1*g2*g4*g5) + (g4^6*t^5.65)/(g1*g2*g3*g5) + (g5^6*t^5.65)/(g1*g2*g3*g4) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g2^7*t^6.)/g4^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g2^7 - (g4^7*t^6.)/g3^7 - (g2^7*t^6.)/g5^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g2^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 - (g1^7*t^6.03)/g2^7 - (g1^7*t^6.03)/g3^7 - (g1^7*t^6.03)/g4^7 - (g1^7*t^6.03)/g5^7 + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.07 + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.07 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.07 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.07 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.07 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.07 + g1^11*g2^11*g3^4*g4^4*g5^4*t^6.1 + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.1 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.1 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.1 + t^6.2/(g1^24*g2^3*g3^3*g4^3*g5^3) - (g2*g3*g4*g5*t^6.33)/g1^6 - (g1*g2*g3*g4*t^6.35)/g5^6 - (g1*g2*g3*g5*t^6.35)/g4^6 - (g1*g2*g4*g5*t^6.35)/g3^6 - (g1*g3*g4*g5*t^6.35)/g2^6 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.43 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.43 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.43 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.43 + (g2^2*g3^2*g4^2*g5^2*t^6.65)/g1^12 + g2^14*g3^14*t^7.11 + g2^14*g3^7*g4^7*t^7.11 + g2^7*g3^14*g4^7*t^7.11 + g2^14*g4^14*t^7.11 + g2^7*g3^7*g4^14*t^7.11 + g3^14*g4^14*t^7.11 + g2^14*g3^7*g5^7*t^7.11 + g2^7*g3^14*g5^7*t^7.11 + g2^14*g4^7*g5^7*t^7.11 + 3*g2^7*g3^7*g4^7*g5^7*t^7.11 + g3^14*g4^7*g5^7*t^7.11 + g2^7*g4^14*g5^7*t^7.11 + g3^7*g4^14*g5^7*t^7.11 + g2^14*g5^14*t^7.11 + g2^7*g3^7*g5^14*t^7.11 + g3^14*g5^14*t^7.11 + g2^7*g4^7*g5^14*t^7.11 + g3^7*g4^7*g5^14*t^7.11 + g4^14*g5^14*t^7.11 + g1^7*g2^14*g3^7*t^7.13 + g1^7*g2^7*g3^14*t^7.13 + g1^7*g2^14*g4^7*t^7.13 + 2*g1^7*g2^7*g3^7*g4^7*t^7.13 + g1^7*g3^14*g4^7*t^7.13 + g1^7*g2^7*g4^14*t^7.13 + g1^7*g3^7*g4^14*t^7.13 + g1^7*g2^14*g5^7*t^7.13 + 2*g1^7*g2^7*g3^7*g5^7*t^7.13 + g1^7*g3^14*g5^7*t^7.13 + 2*g1^7*g2^7*g4^7*g5^7*t^7.13 + 2*g1^7*g3^7*g4^7*g5^7*t^7.13 + g1^7*g4^14*g5^7*t^7.13 + g1^7*g2^7*g5^14*t^7.13 + g1^7*g3^7*g5^14*t^7.13 + g1^7*g4^7*g5^14*t^7.13 + g1^14*g2^14*t^7.16 + g1^14*g2^7*g3^7*t^7.16 + g1^14*g3^14*t^7.16 + g1^14*g2^7*g4^7*t^7.16 + g1^14*g3^7*g4^7*t^7.16 + g1^14*g4^14*t^7.16 + g1^14*g2^7*g5^7*t^7.16 + g1^14*g3^7*g5^7*t^7.16 + g1^14*g4^7*g5^7*t^7.16 + g1^14*g5^14*t^7.16 + (g2^11*t^7.36)/(g1^10*g3^3*g4^3*g5^3) + (g2^4*g3^4*t^7.36)/(g1^10*g4^3*g5^3) + (g3^11*t^7.36)/(g1^10*g2^3*g4^3*g5^3) + (g2^4*g4^4*t^7.36)/(g1^10*g3^3*g5^3) + (g3^4*g4^4*t^7.36)/(g1^10*g2^3*g5^3) + (g4^11*t^7.36)/(g1^10*g2^3*g3^3*g5^3) + (g2^4*g5^4*t^7.36)/(g1^10*g3^3*g4^3) + (g3^4*g5^4*t^7.36)/(g1^10*g2^3*g4^3) + (g4^4*g5^4*t^7.36)/(g1^10*g2^3*g3^3) + (g5^11*t^7.36)/(g1^10*g2^3*g3^3*g4^3) + g1*g2^15*g3^8*g4*g5*t^7.46 + g1*g2^8*g3^15*g4*g5*t^7.46 + g1*g2^15*g3*g4^8*g5*t^7.46 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.46 + g1*g2*g3^15*g4^8*g5*t^7.46 + g1*g2^8*g3*g4^15*g5*t^7.46 + g1*g2*g3^8*g4^15*g5*t^7.46 + g1*g2^15*g3*g4*g5^8*t^7.46 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.46 + g1*g2*g3^15*g4*g5^8*t^7.46 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.46 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.46 + g1*g2*g3*g4^15*g5^8*t^7.46 + g1*g2^8*g3*g4*g5^15*t^7.46 + g1*g2*g3^8*g4*g5^15*t^7.46 + g1*g2*g3*g4^8*g5^15*t^7.46 + g1^8*g2^15*g3*g4*g5*t^7.49 + g1^8*g2^8*g3^8*g4*g5*t^7.49 + g1^8*g2*g3^15*g4*g5*t^7.49 + g1^8*g2^8*g3*g4^8*g5*t^7.49 + g1^8*g2*g3^8*g4^8*g5*t^7.49 + g1^8*g2*g3*g4^15*g5*t^7.49 + g1^8*g2^8*g3*g4*g5^8*t^7.49 + g1^8*g2*g3^8*g4*g5^8*t^7.49 + g1^8*g2*g3*g4^8*g5^8*t^7.49 + g1^8*g2*g3*g4*g5^15*t^7.49 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.56 + (g2^5*g3^5*t^7.69)/(g1^16*g4^2*g5^2) + (g2^5*g4^5*t^7.69)/(g1^16*g3^2*g5^2) + (g3^5*g4^5*t^7.69)/(g1^16*g2^2*g5^2) + (g2^5*g5^5*t^7.69)/(g1^16*g3^2*g4^2) + (g3^5*g5^5*t^7.69)/(g1^16*g2^2*g4^2) + (g4^5*g5^5*t^7.69)/(g1^16*g2^2*g3^2) - (g2^5*t^7.74)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.74)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.74)/(g1^2*g2^2*g3^2*g5^9) - (g2^5*t^7.74)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.74)/(g1^2*g2^2*g4^9*g5^2) - (g2^5*t^7.74)/(g1^2*g3^9*g4^2*g5^2) - (4*t^7.74)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g3^5*t^7.74)/(g1^2*g2^9*g4^2*g5^2) - (g4^5*t^7.74)/(g1^2*g2^2*g3^9*g5^2) - (g4^5*t^7.74)/(g1^2*g2^9*g3^2*g5^2) - (g5^5*t^7.74)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.74)/(g1^2*g2^2*g3^9*g4^2) - (g5^5*t^7.74)/(g1^2*g2^9*g3^2*g4^2) - (g1^5*t^7.77)/(g2^2*g3^2*g4^2*g5^9) - (g1^5*t^7.77)/(g2^2*g3^2*g4^9*g5^2) - (g1^5*t^7.77)/(g2^2*g3^9*g4^2*g5^2) - (g1^5*t^7.77)/(g2^9*g3^2*g4^2*g5^2) + g1^2*g2^16*g3^2*g4^2*g5^2*t^7.81 + g1^2*g2^9*g3^9*g4^2*g5^2*t^7.81 + g1^2*g2^2*g3^16*g4^2*g5^2*t^7.81 + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.81 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.81 + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.81 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.81 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.81 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.81 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.81 - (g2^6*t^8.07)/(g1^8*g3*g4*g5^8) - (g3^6*t^8.07)/(g1^8*g2*g4*g5^8) - (g4^6*t^8.07)/(g1^8*g2*g3*g5^8) - (g2^6*t^8.07)/(g1^8*g3*g4^8*g5) - (g3^6*t^8.07)/(g1^8*g2*g4^8*g5) - (g2^6*t^8.07)/(g1^8*g3^8*g4*g5) - (5*t^8.07)/(g1^8*g2*g3*g4*g5) - (g3^6*t^8.07)/(g1^8*g2^8*g4*g5) - (g4^6*t^8.07)/(g1^8*g2*g3^8*g5) - (g4^6*t^8.07)/(g1^8*g2^8*g3*g5) - (g5^6*t^8.07)/(g1^8*g2*g3*g4^8) - (g5^6*t^8.07)/(g1^8*g2*g3^8*g4) - (g5^6*t^8.07)/(g1^8*g2^8*g3*g4) - t^8.09/(g1*g2*g3*g4*g5^8) - t^8.09/(g1*g2*g3*g4^8*g5) - t^8.09/(g1*g2*g3^8*g4*g5) - t^8.09/(g1*g2^8*g3*g4*g5) + (g2^10*g3^10*g4^3*g5^3*t^8.14)/g1^4 + (g2^10*g3^3*g4^10*g5^3*t^8.14)/g1^4 + (g2^3*g3^10*g4^10*g5^3*t^8.14)/g1^4 + (g2^10*g3^3*g4^3*g5^10*t^8.14)/g1^4 + (g2^3*g3^10*g4^3*g5^10*t^8.14)/g1^4 + (g2^3*g3^3*g4^10*g5^10*t^8.14)/g1^4 - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.19 + t^8.27/(g1^32*g2^4*g3^4*g4^4*g5^4) + t^8.45/g2^14 + t^8.45/g3^14 + t^8.45/(g2^7*g3^7) + t^8.45/g4^14 + t^8.45/(g2^7*g4^7) + t^8.45/(g3^7*g4^7) + t^8.45/g5^14 + t^8.45/(g2^7*g5^7) + t^8.45/(g3^7*g5^7) + t^8.45/(g4^7*g5^7) - (g1^4*g2^11*g3^4*g4^4*t^8.52)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.52)/g5^3 - (g1^4*g2^4*g3^4*g4^11*t^8.52)/g5^3 - (g1^4*g2^11*g3^4*g5^4*t^8.52)/g4^3 - (g1^4*g2^4*g3^11*g5^4*t^8.52)/g4^3 - (g1^4*g2^11*g4^4*g5^4*t^8.52)/g3^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.52 - (g1^4*g3^11*g4^4*g5^4*t^8.52)/g2^3 - (g1^4*g2^4*g4^11*g5^4*t^8.52)/g3^3 - (g1^4*g3^4*g4^11*g5^4*t^8.52)/g2^3 - (g1^4*g2^4*g3^4*g5^11*t^8.52)/g4^3 - (g1^4*g2^4*g4^4*g5^11*t^8.52)/g3^3 - (g1^4*g3^4*g4^4*g5^11*t^8.52)/g2^3 - (g1^11*g2^4*g3^4*g4^4*t^8.55)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.55)/g4^3 - (g1^11*g2^4*g4^4*g5^4*t^8.55)/g3^3 - (g1^11*g3^4*g4^4*g5^4*t^8.55)/g2^3 + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.59 + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.59 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.59 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.59 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.59 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.59 + g1^15*g2^15*g3^8*g4^8*g5^8*t^8.62 + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.62 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.62 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.62 + (g2*g3*g4*g5*t^8.72)/g1^20 + (g2^19*g3^5*t^8.85)/(g1^2*g4^2*g5^2) + (g2^12*g3^12*t^8.85)/(g1^2*g4^2*g5^2) + (g2^5*g3^19*t^8.85)/(g1^2*g4^2*g5^2) + (g2^19*g4^5*t^8.85)/(g1^2*g3^2*g5^2) + (2*g2^12*g3^5*g4^5*t^8.85)/(g1^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.85)/(g1^2*g5^2) + (g3^19*g4^5*t^8.85)/(g1^2*g2^2*g5^2) + (g2^12*g4^12*t^8.85)/(g1^2*g3^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.85)/(g1^2*g5^2) + (g3^12*g4^12*t^8.85)/(g1^2*g2^2*g5^2) + (g2^5*g4^19*t^8.85)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.85)/(g1^2*g2^2*g5^2) + (g2^19*g5^5*t^8.85)/(g1^2*g3^2*g4^2) + (2*g2^12*g3^5*g5^5*t^8.85)/(g1^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.85)/(g1^2*g4^2) + (g3^19*g5^5*t^8.85)/(g1^2*g2^2*g4^2) + (2*g2^12*g4^5*g5^5*t^8.85)/(g1^2*g3^2) + (2*g2^5*g3^5*g4^5*g5^5*t^8.85)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.85)/(g1^2*g2^2) + (2*g2^5*g4^12*g5^5*t^8.85)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.85)/(g1^2*g2^2) + (g4^19*g5^5*t^8.85)/(g1^2*g2^2*g3^2) + (g2^12*g5^12*t^8.85)/(g1^2*g3^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.85)/(g1^2*g4^2) + (g3^12*g5^12*t^8.85)/(g1^2*g2^2*g4^2) + (2*g2^5*g4^5*g5^12*t^8.85)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.85)/(g1^2*g2^2) + (g4^12*g5^12*t^8.85)/(g1^2*g2^2*g3^2) + (g2^5*g5^19*t^8.85)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.85)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.85)/(g1^2*g2^2*g3^2) + (g1^5*g2^19*t^8.87)/(g3^2*g4^2*g5^2) + (2*g1^5*g2^12*g3^5*t^8.87)/(g4^2*g5^2) + (2*g1^5*g2^5*g3^12*t^8.87)/(g4^2*g5^2) + (g1^5*g3^19*t^8.87)/(g2^2*g4^2*g5^2) + (2*g1^5*g2^12*g4^5*t^8.87)/(g3^2*g5^2) + (2*g1^5*g2^5*g3^5*g4^5*t^8.87)/g5^2 + (2*g1^5*g3^12*g4^5*t^8.87)/(g2^2*g5^2) + (2*g1^5*g2^5*g4^12*t^8.87)/(g3^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.87)/(g2^2*g5^2) + (g1^5*g4^19*t^8.87)/(g2^2*g3^2*g5^2) + (2*g1^5*g2^12*g5^5*t^8.87)/(g3^2*g4^2) + (2*g1^5*g2^5*g3^5*g5^5*t^8.87)/g4^2 + (2*g1^5*g3^12*g5^5*t^8.87)/(g2^2*g4^2) + (2*g1^5*g2^5*g4^5*g5^5*t^8.87)/g3^2 + (2*g1^5*g3^5*g4^5*g5^5*t^8.87)/g2^2 + (2*g1^5*g4^12*g5^5*t^8.87)/(g2^2*g3^2) + (2*g1^5*g2^5*g5^12*t^8.87)/(g3^2*g4^2) + (2*g1^5*g3^5*g5^12*t^8.87)/(g2^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.87)/(g2^2*g3^2) + (g1^5*g5^19*t^8.87)/(g2^2*g3^2*g4^2) + (g1^12*g2^12*t^8.9)/(g3^2*g4^2*g5^2) + (2*g1^12*g2^5*g3^5*t^8.9)/(g4^2*g5^2) + (g1^12*g3^12*t^8.9)/(g2^2*g4^2*g5^2) + (2*g1^12*g2^5*g4^5*t^8.9)/(g3^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.9)/(g2^2*g5^2) + (g1^12*g4^12*t^8.9)/(g2^2*g3^2*g5^2) + (2*g1^12*g2^5*g5^5*t^8.9)/(g3^2*g4^2) + (2*g1^12*g3^5*g5^5*t^8.9)/(g2^2*g4^2) + (2*g1^12*g4^5*g5^5*t^8.9)/(g2^2*g3^2) + (g1^12*g5^12*t^8.9)/(g2^2*g3^2*g4^2) + (g1^19*g2^5*t^8.93)/(g3^2*g4^2*g5^2) + (g1^19*g3^5*t^8.93)/(g2^2*g4^2*g5^2) + (g1^19*g4^5*t^8.93)/(g2^2*g3^2*g5^2) + (g1^19*g5^5*t^8.93)/(g2^2*g3^2*g4^2) + g1^9*g2^16*g3^9*g4^9*g5^9*t^8.95 + g1^9*g2^9*g3^16*g4^9*g5^9*t^8.95 + g1^9*g2^9*g3^9*g4^16*g5^9*t^8.95 + g1^9*g2^9*g3^9*g4^9*g5^16*t^8.95 - t^4.74/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.81/(g1^10*g2^3*g3^3*g4^3*g5^3*y) + (g2^3*g3^3*g4^3*g5^3*t^7.59)/(g1^4*y) + (g2^6*g3^6*t^8.62)/(g1^8*g4*g5*y) + (g2^6*g4^6*t^8.62)/(g1^8*g3*g5*y) + (g3^6*g4^6*t^8.62)/(g1^8*g2*g5*y) + (g2^6*g5^6*t^8.62)/(g1^8*g3*g4*y) + (g3^6*g5^6*t^8.62)/(g1^8*g2*g4*y) + (g4^6*g5^6*t^8.62)/(g1^8*g2*g3*y) + (g2^6*t^8.65)/(g1*g3*g4*g5*y) + (g3^6*t^8.65)/(g1*g2*g4*g5*y) + (g4^6*t^8.65)/(g1*g2*g3*g5*y) + (g5^6*t^8.65)/(g1*g2*g3*g4*y) + (g1^6*t^8.67)/(g2*g3*g4*g5*y) - t^8.87/(g1^18*g2^4*g3^4*g4^4*g5^4*y) + (g2^7*t^8.97)/(g1^7*y) + (g3^7*t^8.97)/(g1^7*y) + (g4^7*t^8.97)/(g1^7*y) + (g5^7*t^8.97)/(g1^7*y) - (t^4.74*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.81*y)/(g1^10*g2^3*g3^3*g4^3*g5^3) + (g2^3*g3^3*g4^3*g5^3*t^7.59*y)/g1^4 + (g2^6*g3^6*t^8.62*y)/(g1^8*g4*g5) + (g2^6*g4^6*t^8.62*y)/(g1^8*g3*g5) + (g3^6*g4^6*t^8.62*y)/(g1^8*g2*g5) + (g2^6*g5^6*t^8.62*y)/(g1^8*g3*g4) + (g3^6*g5^6*t^8.62*y)/(g1^8*g2*g4) + (g4^6*g5^6*t^8.62*y)/(g1^8*g2*g3) + (g2^6*t^8.65*y)/(g1*g3*g4*g5) + (g3^6*t^8.65*y)/(g1*g2*g4*g5) + (g4^6*t^8.65*y)/(g1*g2*g3*g5) + (g5^6*t^8.65*y)/(g1*g2*g3*g4) + (g1^6*t^8.67*y)/(g2*g3*g4*g5) - (t^8.87*y)/(g1^18*g2^4*g3^4*g4^4*g5^4) + (g2^7*t^8.97*y)/g1^7 + (g3^7*t^8.97*y)/g1^7 + (g4^7*t^8.97*y)/g1^7 + (g5^7*t^8.97*y)/g1^7 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55702 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ + $ M_2q_2\tilde{q}_2$ | 0.8748 | 1.0805 | 0.8096 | [X:[], M:[0.8587, 0.7032], q:[0.7147, 0.5822, 0.5686], qb:[0.5686, 0.7147, 0.5686], phi:[0.5707]] | t^2.11 + t^2.58 + 3*t^3.41 + 3*t^3.45 + 6*t^3.85 + t^3.89 + t^4.22 + t^4.29 + t^4.69 + 6*t^5.12 + t^5.15 + 3*t^5.16 + t^5.2 + 3*t^5.52 + 3*t^5.56 + 3*t^5.96 + 3*t^5.99 - 10*t^6. - t^4.71/y - t^4.71*y | detail | |
55745 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ + $ M_3q_3\tilde{q}_1$ | 0.903 | 1.1242 | 0.8032 | [X:[], M:[0.8595, 0.6904, 0.7612], q:[0.7149, 0.5947, 0.6194], qb:[0.6194, 0.5854, 0.5854], phi:[0.5702]] | t^2.07 + t^2.28 + t^2.58 + t^3.51 + 2*t^3.54 + 4*t^3.61 + 2*t^3.64 + 2*t^3.9 + 2*t^4. + t^4.14 + t^4.36 + t^4.57 + t^4.65 + t^4.86 + t^5.16 + 3*t^5.22 + 2*t^5.25 + t^5.28 + 4*t^5.32 + 2*t^5.35 + 3*t^5.43 + t^5.58 + 2*t^5.61 + 4*t^5.69 + 2*t^5.71 + t^5.8 + 2*t^5.82 - 9*t^6. - t^4.71/y - t^4.71*y | detail | |
55705 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ | 0.8562 | 1.0535 | 0.8127 | [X:[], M:[0.8904, 0.7265], q:[0.7226, 0.5509, 0.7226], qb:[0.7226, 0.5311, 0.5311], phi:[0.5548]] | t^2.18 + t^2.67 + t^3.19 + 2*t^3.25 + 6*t^3.76 + 2*t^3.82 + 3*t^4.34 + t^4.36 + 4*t^4.85 + 2*t^4.91 + t^4.97 + t^5.34 + t^5.37 + 2*t^5.43 + t^5.86 + 2*t^5.92 + 4*t^5.94 - 6*t^6. - t^4.66/y - t^4.66*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55442 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ | 0.865 | 1.0573 | 0.8182 | [X:[], M:[0.8356], q:[0.7089, 0.5925, 0.5925], qb:[0.5925, 0.5925, 0.5925], phi:[0.5822]] | t^2.51 + 10*t^3.55 + 5*t^3.9 + t^5.01 + 15*t^5.3 - 25*t^6. - t^4.75/y - t^4.75*y | detail |