Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55745 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }M_{3}q_{3}\tilde{q}_{1}$ 0.903 1.1242 0.8032 [M:[0.8595, 0.6904, 0.7612], q:[0.7149, 0.5947, 0.6194], qb:[0.6194, 0.5854, 0.5854], phi:[0.5702]] [M:[[4, 4, 4, 4, 4], [-8, -1, -1, -1, -1], [0, -7, -7, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{2}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{3}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{2}q_{2}q_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{3}$ ${}$ -9 t^2.071 + t^2.284 + t^2.579 + t^3.512 + 2*t^3.54 + 4*t^3.614 + 2*t^3.642 + 2*t^3.901 + 2*t^4.003 + t^4.143 + t^4.355 + t^4.567 + t^4.65 + t^4.862 + t^5.157 + 3*t^5.223 + 2*t^5.251 + t^5.279 + 4*t^5.325 + 2*t^5.353 + 3*t^5.427 + t^5.583 + 2*t^5.611 + 4*t^5.686 + 2*t^5.713 + t^5.796 + 2*t^5.824 - 9*t^6. - 2*t^6.028 + t^6.091 - 4*t^6.102 + 2*t^6.119 + 2*t^6.184 + 4*t^6.193 + t^6.214 + 2*t^6.221 - t^6.361 - 2*t^6.389 + t^6.426 + 2*t^6.479 + 2*t^6.581 + t^6.639 + t^6.721 + t^6.851 + t^6.934 + t^7.024 + 2*t^7.052 + 3*t^7.08 + 4*t^7.126 + t^7.146 + 8*t^7.154 + 4*t^7.182 + 10*t^7.228 + 6*t^7.256 + 3*t^7.284 + 3*t^7.294 + 4*t^7.396 + 2*t^7.413 + 4*t^7.441 + 3*t^7.498 + 3*t^7.507 + 8*t^7.515 + 2*t^7.535 + 4*t^7.543 + t^7.563 + 6*t^7.617 + 3*t^7.645 + t^7.655 - 5*t^7.711 + t^7.736 - 2*t^7.739 + 4*t^7.757 + 3*t^7.801 - 4*t^7.813 + t^7.867 + 2*t^7.895 + 4*t^7.904 + 3*t^8.006 - 9*t^8.071 + t^8.08 - 2*t^8.099 + 2*t^8.108 + t^8.162 - 4*t^8.173 - t^8.218 + 4*t^8.264 - 6*t^8.284 + t^8.285 - 2*t^8.312 + t^8.374 + 2*t^8.402 + 2*t^8.468 + 3*t^8.488 + t^8.498 - 10*t^8.579 - 2*t^8.607 - t^8.644 + t^8.669 - 2*t^8.672 - 4*t^8.681 + 2*t^8.697 + t^8.71 + 3*t^8.735 + 8*t^8.763 + 4*t^8.771 + 4*t^8.791 + t^8.793 + 2*t^8.799 + 2*t^8.819 + 12*t^8.837 + 14*t^8.865 + 8*t^8.893 + 2*t^8.921 + t^8.922 + 11*t^8.939 + 10*t^8.967 + 3*t^8.995 - t^4.711/y - t^6.782/y - t^6.994/y + t^7.355/y + t^7.65/y + t^7.862/y + t^8.427/y + t^8.583/y + (2*t^8.611)/y + t^8.639/y + (4*t^8.686)/y + (2*t^8.713)/y + t^8.796/y + (2*t^8.824)/y - t^8.853/y + (4*t^8.898)/y + (2*t^8.926)/y + (2*t^8.972)/y - t^4.711*y - t^6.782*y - t^6.994*y + t^7.355*y + t^7.65*y + t^7.862*y + t^8.427*y + t^8.583*y + 2*t^8.611*y + t^8.639*y + 4*t^8.686*y + 2*t^8.713*y + t^8.796*y + 2*t^8.824*y - t^8.853*y + 4*t^8.898*y + 2*t^8.926*y + 2*t^8.972*y t^2.071/(g1^8*g2*g3*g4*g5) + t^2.284/(g2^7*g3^7) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.579 + g4^7*g5^7*t^3.512 + g1^7*g4^7*t^3.54 + g1^7*g5^7*t^3.54 + g2^7*g4^7*t^3.614 + g3^7*g4^7*t^3.614 + g2^7*g5^7*t^3.614 + g3^7*g5^7*t^3.614 + g1^7*g2^7*t^3.642 + g1^7*g3^7*t^3.642 + g1*g2*g3*g4^8*g5*t^3.901 + g1*g2*g3*g4*g5^8*t^3.901 + g1*g2^8*g3*g4*g5*t^4.003 + g1*g2*g3^8*g4*g5*t^4.003 + t^4.143/(g1^16*g2^2*g3^2*g4^2*g5^2) + t^4.355/(g1^8*g2^8*g3^8*g4*g5) + t^4.567/(g2^14*g3^14) + (g2^3*g3^3*g4^3*g5^3*t^4.65)/g1^4 + (g1^4*g4^4*g5^4*t^4.862)/(g2^3*g3^3) + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.157 + (g4^12*t^5.223)/(g1^2*g2^2*g3^2*g5^2) + (g4^5*g5^5*t^5.223)/(g1^2*g2^2*g3^2) + (g5^12*t^5.223)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g4^5*t^5.251)/(g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.251)/(g2^2*g3^2*g4^2) + (g1^12*t^5.279)/(g2^2*g3^2*g4^2*g5^2) + (g2^5*g4^5*t^5.325)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.325)/(g1^2*g2^2*g5^2) + (g2^5*g5^5*t^5.325)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.325)/(g1^2*g2^2*g4^2) + (g1^5*g2^5*t^5.353)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.353)/(g2^2*g4^2*g5^2) + (g2^12*t^5.427)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.427)/(g1^2*g4^2*g5^2) + (g3^12*t^5.427)/(g1^2*g2^2*g4^2*g5^2) + (g4^6*g5^6*t^5.583)/(g1^8*g2*g3) + (g4^6*t^5.611)/(g1*g2*g3*g5) + (g5^6*t^5.611)/(g1*g2*g3*g4) + (g2^6*g4^6*t^5.686)/(g1^8*g3*g5) + (g3^6*g4^6*t^5.686)/(g1^8*g2*g5) + (g2^6*g5^6*t^5.686)/(g1^8*g3*g4) + (g3^6*g5^6*t^5.686)/(g1^8*g2*g4) + (g2^6*t^5.713)/(g1*g3*g4*g5) + (g3^6*t^5.713)/(g1*g2*g4*g5) + (g4^7*g5^7*t^5.796)/(g2^7*g3^7) + (g1^7*g4^7*t^5.824)/(g2^7*g3^7) + (g1^7*g5^7*t^5.824)/(g2^7*g3^7) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g4^7 - (g1^7*t^6.028)/g4^7 - (g1^7*t^6.028)/g5^7 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.091 - (g2^7*t^6.102)/g4^7 - (g3^7*t^6.102)/g4^7 - (g2^7*t^6.102)/g5^7 - (g3^7*t^6.102)/g5^7 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.119 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.119 + (g1*g4^8*g5*t^6.184)/(g2^6*g3^6) + (g1*g4*g5^8*t^6.184)/(g2^6*g3^6) + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.193 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.193 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.193 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.193 + t^6.214/(g1^24*g2^3*g3^3*g4^3*g5^3) + g1^11*g2^11*g3^4*g4^4*g5^4*t^6.221 + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.221 - (g2*g3*g4*g5*t^6.361)/g1^6 - (g1*g2*g3*g4*t^6.389)/g5^6 - (g1*g2*g3*g5*t^6.389)/g4^6 + t^6.426/(g1^16*g2^9*g3^9*g4^2*g5^2) + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.479 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.479 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.581 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.581 + t^6.639/(g1^8*g2^15*g3^15*g4*g5) + (g2^2*g3^2*g4^2*g5^2*t^6.721)/g1^12 + t^6.851/(g2^21*g3^21) + (g4^3*g5^3*t^6.934)/(g1^4*g2^4*g3^4) + g4^14*g5^14*t^7.024 + g1^7*g4^14*g5^7*t^7.052 + g1^7*g4^7*g5^14*t^7.052 + g1^14*g4^14*t^7.08 + g1^14*g4^7*g5^7*t^7.08 + g1^14*g5^14*t^7.08 + g2^7*g4^14*g5^7*t^7.126 + g3^7*g4^14*g5^7*t^7.126 + g2^7*g4^7*g5^14*t^7.126 + g3^7*g4^7*g5^14*t^7.126 + (g1^4*g4^4*g5^4*t^7.146)/(g2^10*g3^10) + g1^7*g2^7*g4^14*t^7.154 + g1^7*g3^7*g4^14*t^7.154 + 2*g1^7*g2^7*g4^7*g5^7*t^7.154 + 2*g1^7*g3^7*g4^7*g5^7*t^7.154 + g1^7*g2^7*g5^14*t^7.154 + g1^7*g3^7*g5^14*t^7.154 + g1^14*g2^7*g4^7*t^7.182 + g1^14*g3^7*g4^7*t^7.182 + g1^14*g2^7*g5^7*t^7.182 + g1^14*g3^7*g5^7*t^7.182 + g2^14*g4^14*t^7.228 + g2^7*g3^7*g4^14*t^7.228 + g3^14*g4^14*t^7.228 + g2^14*g4^7*g5^7*t^7.228 + 2*g2^7*g3^7*g4^7*g5^7*t^7.228 + g3^14*g4^7*g5^7*t^7.228 + g2^14*g5^14*t^7.228 + g2^7*g3^7*g5^14*t^7.228 + g3^14*g5^14*t^7.228 + g1^7*g2^14*g4^7*t^7.256 + g1^7*g2^7*g3^7*g4^7*t^7.256 + g1^7*g3^14*g4^7*t^7.256 + g1^7*g2^14*g5^7*t^7.256 + g1^7*g2^7*g3^7*g5^7*t^7.256 + g1^7*g3^14*g5^7*t^7.256 + g1^14*g2^14*t^7.284 + g1^14*g2^7*g3^7*t^7.284 + g1^14*g3^14*t^7.284 + (g4^11*t^7.294)/(g1^10*g2^3*g3^3*g5^3) + (g4^4*g5^4*t^7.294)/(g1^10*g2^3*g3^3) + (g5^11*t^7.294)/(g1^10*g2^3*g3^3*g4^3) + (g2^4*g4^4*t^7.396)/(g1^10*g3^3*g5^3) + (g3^4*g4^4*t^7.396)/(g1^10*g2^3*g5^3) + (g2^4*g5^4*t^7.396)/(g1^10*g3^3*g4^3) + (g3^4*g5^4*t^7.396)/(g1^10*g2^3*g4^3) + g1*g2*g3*g4^15*g5^8*t^7.413 + g1*g2*g3*g4^8*g5^15*t^7.413 + g1^8*g2*g3*g4^15*g5*t^7.441 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.441 + g1^8*g2*g3*g4*g5^15*t^7.441 + (g2^11*t^7.498)/(g1^10*g3^3*g4^3*g5^3) + (g2^4*g3^4*t^7.498)/(g1^10*g4^3*g5^3) + (g3^11*t^7.498)/(g1^10*g2^3*g4^3*g5^3) + (g4^12*t^7.507)/(g1^2*g2^9*g3^9*g5^2) + (g4^5*g5^5*t^7.507)/(g1^2*g2^9*g3^9) + (g5^12*t^7.507)/(g1^2*g2^9*g3^9*g4^2) + g1*g2^8*g3*g4^15*g5*t^7.515 + g1*g2*g3^8*g4^15*g5*t^7.515 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.515 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.515 + g1*g2^8*g3*g4*g5^15*t^7.515 + g1*g2*g3^8*g4*g5^15*t^7.515 + (g1^5*g4^5*t^7.535)/(g2^9*g3^9*g5^2) + (g1^5*g5^5*t^7.535)/(g2^9*g3^9*g4^2) + g1^8*g2^8*g3*g4^8*g5*t^7.543 + g1^8*g2*g3^8*g4^8*g5*t^7.543 + g1^8*g2^8*g3*g4*g5^8*t^7.543 + g1^8*g2*g3^8*g4*g5^8*t^7.543 + (g1^12*t^7.563)/(g2^9*g3^9*g4^2*g5^2) + g1*g2^15*g3*g4^8*g5*t^7.617 + g1*g2^8*g3^8*g4^8*g5*t^7.617 + g1*g2*g3^15*g4^8*g5*t^7.617 + g1*g2^15*g3*g4*g5^8*t^7.617 + g1*g2^8*g3^8*g4*g5^8*t^7.617 + g1*g2*g3^15*g4*g5^8*t^7.617 + g1^8*g2^15*g3*g4*g5*t^7.645 + g1^8*g2^8*g3^8*g4*g5*t^7.645 + g1^8*g2*g3^15*g4*g5*t^7.645 + (g4^5*g5^5*t^7.655)/(g1^16*g2^2*g3^2) - (g4^5*t^7.711)/(g1^2*g2^2*g3^2*g5^9) - (3*t^7.711)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g5^5*t^7.711)/(g1^2*g2^2*g3^2*g4^9) + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.736 - (g1^5*t^7.739)/(g2^2*g3^2*g4^2*g5^9) - (g1^5*t^7.739)/(g2^2*g3^2*g4^9*g5^2) + (g2^5*g4^5*t^7.757)/(g1^16*g3^2*g5^2) + (g3^5*g4^5*t^7.757)/(g1^16*g2^2*g5^2) + (g2^5*g5^5*t^7.757)/(g1^16*g3^2*g4^2) + (g3^5*g5^5*t^7.757)/(g1^16*g2^2*g4^2) + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.801 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.801 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.801 - (g2^5*t^7.813)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.813)/(g1^2*g2^2*g4^2*g5^9) - (g2^5*t^7.813)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.813)/(g1^2*g2^2*g4^9*g5^2) + (g4^6*g5^6*t^7.867)/(g1^8*g2^8*g3^8) + (g4^6*t^7.895)/(g1*g2^8*g3^8*g5) + (g5^6*t^7.895)/(g1*g2^8*g3^8*g4) + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.904 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.904 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.904 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.904 + g1^2*g2^16*g3^2*g4^2*g5^2*t^8.006 + g1^2*g2^9*g3^9*g4^2*g5^2*t^8.006 + g1^2*g2^2*g3^16*g4^2*g5^2*t^8.006 - (g4^6*t^8.071)/(g1^8*g2*g3*g5^8) - (g2^6*t^8.071)/(g1^8*g3^8*g4*g5) - (5*t^8.071)/(g1^8*g2*g3*g4*g5) - (g3^6*t^8.071)/(g1^8*g2^8*g4*g5) - (g5^6*t^8.071)/(g1^8*g2*g3*g4^8) + (g4^7*g5^7*t^8.08)/(g2^14*g3^14) - t^8.099/(g1*g2*g3*g4*g5^8) - t^8.099/(g1*g2*g3*g4^8*g5) + (g1^7*g4^7*t^8.108)/(g2^14*g3^14) + (g1^7*g5^7*t^8.108)/(g2^14*g3^14) + (g2^3*g3^3*g4^10*g5^10*t^8.162)/g1^4 - (g2^6*t^8.173)/(g1^8*g3*g4*g5^8) - (g3^6*t^8.173)/(g1^8*g2*g4*g5^8) - (g2^6*t^8.173)/(g1^8*g3*g4^8*g5) - (g3^6*t^8.173)/(g1^8*g2*g4^8*g5) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.218 + (g2^10*g3^3*g4^10*g5^3*t^8.264)/g1^4 + (g2^3*g3^10*g4^10*g5^3*t^8.264)/g1^4 + (g2^10*g3^3*g4^3*g5^10*t^8.264)/g1^4 + (g2^3*g3^10*g4^3*g5^10*t^8.264)/g1^4 - (4*t^8.284)/(g2^7*g3^7) - (g4^7*t^8.284)/(g2^7*g3^7*g5^7) - (g5^7*t^8.284)/(g2^7*g3^7*g4^7) + t^8.285/(g1^32*g2^4*g3^4*g4^4*g5^4) - (g1^7*t^8.312)/(g2^7*g3^7*g4^7) - (g1^7*t^8.312)/(g2^7*g3^7*g5^7) + (g1^4*g4^11*g5^11*t^8.374)/(g2^3*g3^3) + (g1^11*g4^11*g5^4*t^8.402)/(g2^3*g3^3) + (g1^11*g4^4*g5^11*t^8.402)/(g2^3*g3^3) + (g1*g4^8*g5*t^8.468)/(g2^13*g3^13) + (g1*g4*g5^8*t^8.468)/(g2^13*g3^13) + t^8.488/g4^14 + t^8.488/g5^14 + t^8.488/(g4^7*g5^7) + t^8.498/(g1^24*g2^10*g3^10*g4^3*g5^3) - (g1^4*g2^4*g3^4*g4^11*t^8.579)/g5^3 - (g1^4*g2^11*g4^4*g5^4*t^8.579)/g3^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.579 - (g1^4*g3^11*g4^4*g5^4*t^8.579)/g2^3 - (g1^4*g2^4*g3^4*g5^11*t^8.579)/g4^3 - (g1^11*g2^4*g3^4*g4^4*t^8.607)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.607)/g4^3 - (g4*g5*t^8.644)/(g1^6*g2^6*g3^6) + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.669 - (g1*g4*t^8.672)/(g2^6*g3^6*g5^6) - (g1*g5*t^8.672)/(g2^6*g3^6*g4^6) - (g1^4*g2^11*g3^4*g4^4*t^8.681)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.681)/g5^3 - (g1^4*g2^11*g3^4*g5^4*t^8.681)/g4^3 - (g1^4*g2^4*g3^11*g5^4*t^8.681)/g4^3 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.697 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.697 + t^8.71/(g1^16*g2^16*g3^16*g4^2*g5^2) + (g4^19*g5^5*t^8.735)/(g1^2*g2^2*g3^2) + (g4^12*g5^12*t^8.735)/(g1^2*g2^2*g3^2) + (g4^5*g5^19*t^8.735)/(g1^2*g2^2*g3^2) + (g1^5*g4^19*t^8.763)/(g2^2*g3^2*g5^2) + (3*g1^5*g4^12*g5^5*t^8.763)/(g2^2*g3^2) + (3*g1^5*g4^5*g5^12*t^8.763)/(g2^2*g3^2) + (g1^5*g5^19*t^8.763)/(g2^2*g3^2*g4^2) + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.771 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.771 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.771 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.771 + (g1^12*g4^12*t^8.791)/(g2^2*g3^2*g5^2) + (2*g1^12*g4^5*g5^5*t^8.791)/(g2^2*g3^2) + (g1^12*g5^12*t^8.791)/(g2^2*g3^2*g4^2) + (g2*g3*g4*g5*t^8.793)/g1^20 + g1^15*g2^15*g3^8*g4^8*g5^8*t^8.799 + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.799 + (g1^19*g4^5*t^8.819)/(g2^2*g3^2*g5^2) + (g1^19*g5^5*t^8.819)/(g2^2*g3^2*g4^2) + (g2^5*g4^19*t^8.837)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.837)/(g1^2*g2^2*g5^2) + (2*g2^5*g4^12*g5^5*t^8.837)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.837)/(g1^2*g2^2) + (2*g2^5*g4^5*g5^12*t^8.837)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.837)/(g1^2*g2^2) + (g2^5*g5^19*t^8.837)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.837)/(g1^2*g2^2*g4^2) + (2*g1^5*g2^5*g4^12*t^8.865)/(g3^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.865)/(g2^2*g5^2) + (3*g1^5*g2^5*g4^5*g5^5*t^8.865)/g3^2 + (3*g1^5*g3^5*g4^5*g5^5*t^8.865)/g2^2 + (2*g1^5*g2^5*g5^12*t^8.865)/(g3^2*g4^2) + (2*g1^5*g3^5*g5^12*t^8.865)/(g2^2*g4^2) + (2*g1^12*g2^5*g4^5*t^8.893)/(g3^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.893)/(g2^2*g5^2) + (2*g1^12*g2^5*g5^5*t^8.893)/(g3^2*g4^2) + (2*g1^12*g3^5*g5^5*t^8.893)/(g2^2*g4^2) + (g1^19*g2^5*t^8.921)/(g3^2*g4^2*g5^2) + (g1^19*g3^5*t^8.921)/(g2^2*g4^2*g5^2) + t^8.922/(g1^8*g2^22*g3^22*g4*g5) + (g2^12*g4^12*t^8.939)/(g1^2*g3^2*g5^2) + (g2^5*g3^5*g4^12*t^8.939)/(g1^2*g5^2) + (g3^12*g4^12*t^8.939)/(g1^2*g2^2*g5^2) + (2*g2^12*g4^5*g5^5*t^8.939)/(g1^2*g3^2) + (g2^5*g3^5*g4^5*g5^5*t^8.939)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.939)/(g1^2*g2^2) + (g2^12*g5^12*t^8.939)/(g1^2*g3^2*g4^2) + (g2^5*g3^5*g5^12*t^8.939)/(g1^2*g4^2) + (g3^12*g5^12*t^8.939)/(g1^2*g2^2*g4^2) + (2*g1^5*g2^12*g4^5*t^8.967)/(g3^2*g5^2) + (g1^5*g2^5*g3^5*g4^5*t^8.967)/g5^2 + (2*g1^5*g3^12*g4^5*t^8.967)/(g2^2*g5^2) + (2*g1^5*g2^12*g5^5*t^8.967)/(g3^2*g4^2) + (g1^5*g2^5*g3^5*g5^5*t^8.967)/g4^2 + (2*g1^5*g3^12*g5^5*t^8.967)/(g2^2*g4^2) + (g1^12*g2^12*t^8.995)/(g3^2*g4^2*g5^2) + (g1^12*g2^5*g3^5*t^8.995)/(g4^2*g5^2) + (g1^12*g3^12*t^8.995)/(g2^2*g4^2*g5^2) - t^4.711/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.782/(g1^10*g2^3*g3^3*g4^3*g5^3*y) - t^6.994/(g1^2*g2^9*g3^9*g4^2*g5^2*y) + t^7.355/(g1^8*g2^8*g3^8*g4*g5*y) + (g2^3*g3^3*g4^3*g5^3*t^7.65)/(g1^4*y) + (g1^4*g4^4*g5^4*t^7.862)/(g2^3*g3^3*y) + (g2^5*g3^5*t^8.427)/(g1^2*g4^2*g5^2*y) + (g4^6*g5^6*t^8.583)/(g1^8*g2*g3*y) + (g4^6*t^8.611)/(g1*g2*g3*g5*y) + (g5^6*t^8.611)/(g1*g2*g3*g4*y) + (g1^6*t^8.639)/(g2*g3*g4*g5*y) + (g2^6*g4^6*t^8.686)/(g1^8*g3*g5*y) + (g3^6*g4^6*t^8.686)/(g1^8*g2*g5*y) + (g2^6*g5^6*t^8.686)/(g1^8*g3*g4*y) + (g3^6*g5^6*t^8.686)/(g1^8*g2*g4*y) + (g2^6*t^8.713)/(g1*g3*g4*g5*y) + (g3^6*t^8.713)/(g1*g2*g4*g5*y) + (g4^7*g5^7*t^8.796)/(g2^7*g3^7*y) + (g1^7*g4^7*t^8.824)/(g2^7*g3^7*y) + (g1^7*g5^7*t^8.824)/(g2^7*g3^7*y) - t^8.853/(g1^18*g2^4*g3^4*g4^4*g5^4*y) + (g4^7*t^8.898)/(g2^7*y) + (g4^7*t^8.898)/(g3^7*y) + (g5^7*t^8.898)/(g2^7*y) + (g5^7*t^8.898)/(g3^7*y) + (g1^7*t^8.926)/(g2^7*y) + (g1^7*t^8.926)/(g3^7*y) + (g4^7*t^8.972)/(g1^7*y) + (g5^7*t^8.972)/(g1^7*y) - (t^4.711*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.782*y)/(g1^10*g2^3*g3^3*g4^3*g5^3) - (t^6.994*y)/(g1^2*g2^9*g3^9*g4^2*g5^2) + (t^7.355*y)/(g1^8*g2^8*g3^8*g4*g5) + (g2^3*g3^3*g4^3*g5^3*t^7.65*y)/g1^4 + (g1^4*g4^4*g5^4*t^7.862*y)/(g2^3*g3^3) + (g2^5*g3^5*t^8.427*y)/(g1^2*g4^2*g5^2) + (g4^6*g5^6*t^8.583*y)/(g1^8*g2*g3) + (g4^6*t^8.611*y)/(g1*g2*g3*g5) + (g5^6*t^8.611*y)/(g1*g2*g3*g4) + (g1^6*t^8.639*y)/(g2*g3*g4*g5) + (g2^6*g4^6*t^8.686*y)/(g1^8*g3*g5) + (g3^6*g4^6*t^8.686*y)/(g1^8*g2*g5) + (g2^6*g5^6*t^8.686*y)/(g1^8*g3*g4) + (g3^6*g5^6*t^8.686*y)/(g1^8*g2*g4) + (g2^6*t^8.713*y)/(g1*g3*g4*g5) + (g3^6*t^8.713*y)/(g1*g2*g4*g5) + (g4^7*g5^7*t^8.796*y)/(g2^7*g3^7) + (g1^7*g4^7*t^8.824*y)/(g2^7*g3^7) + (g1^7*g5^7*t^8.824*y)/(g2^7*g3^7) - (t^8.853*y)/(g1^18*g2^4*g3^4*g4^4*g5^4) + (g4^7*t^8.898*y)/g2^7 + (g4^7*t^8.898*y)/g3^7 + (g5^7*t^8.898*y)/g2^7 + (g5^7*t^8.898*y)/g3^7 + (g1^7*t^8.926*y)/g2^7 + (g1^7*t^8.926*y)/g3^7 + (g4^7*t^8.972*y)/g1^7 + (g5^7*t^8.972*y)/g1^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55686 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ 0.8857 1.0964 0.8078 [M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] t^2.067 + t^2.52 + 6*t^3.553 + 4*t^3.58 + 4*t^3.906 + t^4.134 + t^4.586 + t^5.039 + 10*t^5.293 + 4*t^5.32 + t^5.347 + 6*t^5.62 + 4*t^5.647 - 17*t^6. - t^4.74/y - t^4.74*y detail