Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55745 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ + $ M_3q_3\tilde{q}_1$ 0.903 1.1242 0.8032 [X:[], M:[0.8595, 0.6904, 0.7612], q:[0.7149, 0.5947, 0.6194], qb:[0.6194, 0.5854, 0.5854], phi:[0.5702]] [X:[], M:[[4, 4, 4, 4, 4], [-8, -1, -1, -1, -1], [0, -7, -7, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ M_1$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ q_1\tilde{q}_2$, $ q_1q_3$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ M_1M_2$, $ M_1M_3$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2q_2q_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_2$ . -9 t^2.07 + t^2.28 + t^2.58 + t^3.51 + 2*t^3.54 + 4*t^3.61 + 2*t^3.64 + 2*t^3.9 + 2*t^4. + t^4.14 + t^4.36 + t^4.57 + t^4.65 + t^4.86 + t^5.16 + 3*t^5.22 + 2*t^5.25 + t^5.28 + 4*t^5.32 + 2*t^5.35 + 3*t^5.43 + t^5.58 + 2*t^5.61 + 4*t^5.69 + 2*t^5.71 + t^5.8 + 2*t^5.82 - 9*t^6. - 2*t^6.03 + t^6.09 - 4*t^6.1 + 2*t^6.12 + 2*t^6.18 + 4*t^6.19 + t^6.21 + 2*t^6.22 - t^6.36 - 2*t^6.39 + t^6.43 + 2*t^6.48 + 2*t^6.58 + t^6.64 + t^6.72 + t^6.85 + t^6.93 + t^7.02 + 2*t^7.05 + 3*t^7.08 + 4*t^7.13 + 9*t^7.15 + 4*t^7.18 + 10*t^7.23 + 6*t^7.26 + 3*t^7.28 + 3*t^7.29 + 4*t^7.4 + 2*t^7.41 + 4*t^7.44 + 3*t^7.5 + 11*t^7.51 + 2*t^7.53 + 4*t^7.54 + t^7.56 + 6*t^7.62 + 3*t^7.64 + t^7.65 - 5*t^7.71 - t^7.74 + 4*t^7.76 + 3*t^7.8 - 4*t^7.81 + t^7.87 + 6*t^7.9 + 3*t^8.01 - 9*t^8.07 + t^8.08 - 2*t^8.1 + 2*t^8.11 + t^8.16 - 4*t^8.17 - t^8.22 + 4*t^8.26 - 6*t^8.28 + t^8.29 - 2*t^8.31 + t^8.37 + 2*t^8.4 + 2*t^8.47 + 3*t^8.49 + t^8.5 - 10*t^8.58 - 2*t^8.61 - t^8.64 - t^8.67 - 4*t^8.68 + 2*t^8.7 + t^8.71 + 3*t^8.74 + 8*t^8.76 + 4*t^8.77 + 5*t^8.79 + 2*t^8.8 + 2*t^8.82 + 12*t^8.84 + 14*t^8.87 + 8*t^8.89 + 3*t^8.92 + 11*t^8.94 + 10*t^8.97 - t^4.71/y - t^6.78/y - t^6.99/y + t^7.36/y + t^7.65/y + t^7.86/y + t^8.43/y + t^8.58/y + (2*t^8.61)/y + t^8.64/y + (4*t^8.69)/y + (2*t^8.71)/y + t^8.8/y + (2*t^8.82)/y - t^8.85/y + (4*t^8.9)/y + (2*t^8.93)/y + (2*t^8.97)/y - t^4.71*y - t^6.78*y - t^6.99*y + t^7.36*y + t^7.65*y + t^7.86*y + t^8.43*y + t^8.58*y + 2*t^8.61*y + t^8.64*y + 4*t^8.69*y + 2*t^8.71*y + t^8.8*y + 2*t^8.82*y - t^8.85*y + 4*t^8.9*y + 2*t^8.93*y + 2*t^8.97*y t^2.07/(g1^8*g2*g3*g4*g5) + t^2.28/(g2^7*g3^7) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.58 + g4^7*g5^7*t^3.51 + g1^7*g4^7*t^3.54 + g1^7*g5^7*t^3.54 + g2^7*g4^7*t^3.61 + g3^7*g4^7*t^3.61 + g2^7*g5^7*t^3.61 + g3^7*g5^7*t^3.61 + g1^7*g2^7*t^3.64 + g1^7*g3^7*t^3.64 + g1*g2*g3*g4^8*g5*t^3.9 + g1*g2*g3*g4*g5^8*t^3.9 + g1*g2^8*g3*g4*g5*t^4. + g1*g2*g3^8*g4*g5*t^4. + t^4.14/(g1^16*g2^2*g3^2*g4^2*g5^2) + t^4.36/(g1^8*g2^8*g3^8*g4*g5) + t^4.57/(g2^14*g3^14) + (g2^3*g3^3*g4^3*g5^3*t^4.65)/g1^4 + (g1^4*g4^4*g5^4*t^4.86)/(g2^3*g3^3) + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.16 + (g4^12*t^5.22)/(g1^2*g2^2*g3^2*g5^2) + (g4^5*g5^5*t^5.22)/(g1^2*g2^2*g3^2) + (g5^12*t^5.22)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g4^5*t^5.25)/(g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.25)/(g2^2*g3^2*g4^2) + (g1^12*t^5.28)/(g2^2*g3^2*g4^2*g5^2) + (g2^5*g4^5*t^5.32)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.32)/(g1^2*g2^2*g5^2) + (g2^5*g5^5*t^5.32)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.32)/(g1^2*g2^2*g4^2) + (g1^5*g2^5*t^5.35)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.35)/(g2^2*g4^2*g5^2) + (g2^12*t^5.43)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.43)/(g1^2*g4^2*g5^2) + (g3^12*t^5.43)/(g1^2*g2^2*g4^2*g5^2) + (g4^6*g5^6*t^5.58)/(g1^8*g2*g3) + (g4^6*t^5.61)/(g1*g2*g3*g5) + (g5^6*t^5.61)/(g1*g2*g3*g4) + (g2^6*g4^6*t^5.69)/(g1^8*g3*g5) + (g3^6*g4^6*t^5.69)/(g1^8*g2*g5) + (g2^6*g5^6*t^5.69)/(g1^8*g3*g4) + (g3^6*g5^6*t^5.69)/(g1^8*g2*g4) + (g2^6*t^5.71)/(g1*g3*g4*g5) + (g3^6*t^5.71)/(g1*g2*g4*g5) + (g4^7*g5^7*t^5.8)/(g2^7*g3^7) + (g1^7*g4^7*t^5.82)/(g2^7*g3^7) + (g1^7*g5^7*t^5.82)/(g2^7*g3^7) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g4^7 - (g1^7*t^6.03)/g4^7 - (g1^7*t^6.03)/g5^7 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.09 - (g2^7*t^6.1)/g4^7 - (g3^7*t^6.1)/g4^7 - (g2^7*t^6.1)/g5^7 - (g3^7*t^6.1)/g5^7 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.12 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.12 + (g1*g4^8*g5*t^6.18)/(g2^6*g3^6) + (g1*g4*g5^8*t^6.18)/(g2^6*g3^6) + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.19 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.19 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.19 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.19 + t^6.21/(g1^24*g2^3*g3^3*g4^3*g5^3) + g1^11*g2^11*g3^4*g4^4*g5^4*t^6.22 + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.22 - (g2*g3*g4*g5*t^6.36)/g1^6 - (g1*g2*g3*g4*t^6.39)/g5^6 - (g1*g2*g3*g5*t^6.39)/g4^6 + t^6.43/(g1^16*g2^9*g3^9*g4^2*g5^2) + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.48 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.48 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.58 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.58 + t^6.64/(g1^8*g2^15*g3^15*g4*g5) + (g2^2*g3^2*g4^2*g5^2*t^6.72)/g1^12 + t^6.85/(g2^21*g3^21) + (g4^3*g5^3*t^6.93)/(g1^4*g2^4*g3^4) + g4^14*g5^14*t^7.02 + g1^7*g4^14*g5^7*t^7.05 + g1^7*g4^7*g5^14*t^7.05 + g1^14*g4^14*t^7.08 + g1^14*g4^7*g5^7*t^7.08 + g1^14*g5^14*t^7.08 + g2^7*g4^14*g5^7*t^7.13 + g3^7*g4^14*g5^7*t^7.13 + g2^7*g4^7*g5^14*t^7.13 + g3^7*g4^7*g5^14*t^7.13 + g1^7*g2^7*g4^14*t^7.15 + g1^7*g3^7*g4^14*t^7.15 + (g1^4*g4^4*g5^4*t^7.15)/(g2^10*g3^10) + 2*g1^7*g2^7*g4^7*g5^7*t^7.15 + 2*g1^7*g3^7*g4^7*g5^7*t^7.15 + g1^7*g2^7*g5^14*t^7.15 + g1^7*g3^7*g5^14*t^7.15 + g1^14*g2^7*g4^7*t^7.18 + g1^14*g3^7*g4^7*t^7.18 + g1^14*g2^7*g5^7*t^7.18 + g1^14*g3^7*g5^7*t^7.18 + g2^14*g4^14*t^7.23 + g2^7*g3^7*g4^14*t^7.23 + g3^14*g4^14*t^7.23 + g2^14*g4^7*g5^7*t^7.23 + 2*g2^7*g3^7*g4^7*g5^7*t^7.23 + g3^14*g4^7*g5^7*t^7.23 + g2^14*g5^14*t^7.23 + g2^7*g3^7*g5^14*t^7.23 + g3^14*g5^14*t^7.23 + g1^7*g2^14*g4^7*t^7.26 + g1^7*g2^7*g3^7*g4^7*t^7.26 + g1^7*g3^14*g4^7*t^7.26 + g1^7*g2^14*g5^7*t^7.26 + g1^7*g2^7*g3^7*g5^7*t^7.26 + g1^7*g3^14*g5^7*t^7.26 + g1^14*g2^14*t^7.28 + g1^14*g2^7*g3^7*t^7.28 + g1^14*g3^14*t^7.28 + (g4^11*t^7.29)/(g1^10*g2^3*g3^3*g5^3) + (g4^4*g5^4*t^7.29)/(g1^10*g2^3*g3^3) + (g5^11*t^7.29)/(g1^10*g2^3*g3^3*g4^3) + (g2^4*g4^4*t^7.4)/(g1^10*g3^3*g5^3) + (g3^4*g4^4*t^7.4)/(g1^10*g2^3*g5^3) + (g2^4*g5^4*t^7.4)/(g1^10*g3^3*g4^3) + (g3^4*g5^4*t^7.4)/(g1^10*g2^3*g4^3) + g1*g2*g3*g4^15*g5^8*t^7.41 + g1*g2*g3*g4^8*g5^15*t^7.41 + g1^8*g2*g3*g4^15*g5*t^7.44 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.44 + g1^8*g2*g3*g4*g5^15*t^7.44 + (g2^11*t^7.5)/(g1^10*g3^3*g4^3*g5^3) + (g2^4*g3^4*t^7.5)/(g1^10*g4^3*g5^3) + (g3^11*t^7.5)/(g1^10*g2^3*g4^3*g5^3) + (g4^12*t^7.51)/(g1^2*g2^9*g3^9*g5^2) + g1*g2^8*g3*g4^15*g5*t^7.51 + g1*g2*g3^8*g4^15*g5*t^7.51 + (g4^5*g5^5*t^7.51)/(g1^2*g2^9*g3^9) + 2*g1*g2^8*g3*g4^8*g5^8*t^7.51 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.51 + (g5^12*t^7.51)/(g1^2*g2^9*g3^9*g4^2) + g1*g2^8*g3*g4*g5^15*t^7.51 + g1*g2*g3^8*g4*g5^15*t^7.51 + (g1^5*g4^5*t^7.53)/(g2^9*g3^9*g5^2) + (g1^5*g5^5*t^7.53)/(g2^9*g3^9*g4^2) + g1^8*g2^8*g3*g4^8*g5*t^7.54 + g1^8*g2*g3^8*g4^8*g5*t^7.54 + g1^8*g2^8*g3*g4*g5^8*t^7.54 + g1^8*g2*g3^8*g4*g5^8*t^7.54 + (g1^12*t^7.56)/(g2^9*g3^9*g4^2*g5^2) + g1*g2^15*g3*g4^8*g5*t^7.62 + g1*g2^8*g3^8*g4^8*g5*t^7.62 + g1*g2*g3^15*g4^8*g5*t^7.62 + g1*g2^15*g3*g4*g5^8*t^7.62 + g1*g2^8*g3^8*g4*g5^8*t^7.62 + g1*g2*g3^15*g4*g5^8*t^7.62 + g1^8*g2^15*g3*g4*g5*t^7.64 + g1^8*g2^8*g3^8*g4*g5*t^7.64 + g1^8*g2*g3^15*g4*g5*t^7.64 + (g4^5*g5^5*t^7.65)/(g1^16*g2^2*g3^2) - (g4^5*t^7.71)/(g1^2*g2^2*g3^2*g5^9) - (3*t^7.71)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g5^5*t^7.71)/(g1^2*g2^2*g3^2*g4^9) - (g1^5*t^7.74)/(g2^2*g3^2*g4^2*g5^9) - (g1^5*t^7.74)/(g2^2*g3^2*g4^9*g5^2) + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.74 + (g2^5*g4^5*t^7.76)/(g1^16*g3^2*g5^2) + (g3^5*g4^5*t^7.76)/(g1^16*g2^2*g5^2) + (g2^5*g5^5*t^7.76)/(g1^16*g3^2*g4^2) + (g3^5*g5^5*t^7.76)/(g1^16*g2^2*g4^2) + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.8 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.8 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.8 - (g2^5*t^7.81)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.81)/(g1^2*g2^2*g4^2*g5^9) - (g2^5*t^7.81)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.81)/(g1^2*g2^2*g4^9*g5^2) + (g4^6*g5^6*t^7.87)/(g1^8*g2^8*g3^8) + (g4^6*t^7.9)/(g1*g2^8*g3^8*g5) + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.9 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.9 + (g5^6*t^7.9)/(g1*g2^8*g3^8*g4) + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.9 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.9 + g1^2*g2^16*g3^2*g4^2*g5^2*t^8.01 + g1^2*g2^9*g3^9*g4^2*g5^2*t^8.01 + g1^2*g2^2*g3^16*g4^2*g5^2*t^8.01 - (g4^6*t^8.07)/(g1^8*g2*g3*g5^8) - (g2^6*t^8.07)/(g1^8*g3^8*g4*g5) - (5*t^8.07)/(g1^8*g2*g3*g4*g5) - (g3^6*t^8.07)/(g1^8*g2^8*g4*g5) - (g5^6*t^8.07)/(g1^8*g2*g3*g4^8) + (g4^7*g5^7*t^8.08)/(g2^14*g3^14) - t^8.1/(g1*g2*g3*g4*g5^8) - t^8.1/(g1*g2*g3*g4^8*g5) + (g1^7*g4^7*t^8.11)/(g2^14*g3^14) + (g1^7*g5^7*t^8.11)/(g2^14*g3^14) + (g2^3*g3^3*g4^10*g5^10*t^8.16)/g1^4 - (g2^6*t^8.17)/(g1^8*g3*g4*g5^8) - (g3^6*t^8.17)/(g1^8*g2*g4*g5^8) - (g2^6*t^8.17)/(g1^8*g3*g4^8*g5) - (g3^6*t^8.17)/(g1^8*g2*g4^8*g5) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.22 + (g2^10*g3^3*g4^10*g5^3*t^8.26)/g1^4 + (g2^3*g3^10*g4^10*g5^3*t^8.26)/g1^4 + (g2^10*g3^3*g4^3*g5^10*t^8.26)/g1^4 + (g2^3*g3^10*g4^3*g5^10*t^8.26)/g1^4 - (4*t^8.28)/(g2^7*g3^7) - (g4^7*t^8.28)/(g2^7*g3^7*g5^7) - (g5^7*t^8.28)/(g2^7*g3^7*g4^7) + t^8.29/(g1^32*g2^4*g3^4*g4^4*g5^4) - (g1^7*t^8.31)/(g2^7*g3^7*g4^7) - (g1^7*t^8.31)/(g2^7*g3^7*g5^7) + (g1^4*g4^11*g5^11*t^8.37)/(g2^3*g3^3) + (g1^11*g4^11*g5^4*t^8.4)/(g2^3*g3^3) + (g1^11*g4^4*g5^11*t^8.4)/(g2^3*g3^3) + (g1*g4^8*g5*t^8.47)/(g2^13*g3^13) + (g1*g4*g5^8*t^8.47)/(g2^13*g3^13) + t^8.49/g4^14 + t^8.49/g5^14 + t^8.49/(g4^7*g5^7) + t^8.5/(g1^24*g2^10*g3^10*g4^3*g5^3) - (g1^4*g2^4*g3^4*g4^11*t^8.58)/g5^3 - (g1^4*g2^11*g4^4*g5^4*t^8.58)/g3^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.58 - (g1^4*g3^11*g4^4*g5^4*t^8.58)/g2^3 - (g1^4*g2^4*g3^4*g5^11*t^8.58)/g4^3 - (g1^11*g2^4*g3^4*g4^4*t^8.61)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.61)/g4^3 - (g4*g5*t^8.64)/(g1^6*g2^6*g3^6) - (g1*g4*t^8.67)/(g2^6*g3^6*g5^6) - (g1*g5*t^8.67)/(g2^6*g3^6*g4^6) + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.67 - (g1^4*g2^11*g3^4*g4^4*t^8.68)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.68)/g5^3 - (g1^4*g2^11*g3^4*g5^4*t^8.68)/g4^3 - (g1^4*g2^4*g3^11*g5^4*t^8.68)/g4^3 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.7 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.7 + t^8.71/(g1^16*g2^16*g3^16*g4^2*g5^2) + (g4^19*g5^5*t^8.74)/(g1^2*g2^2*g3^2) + (g4^12*g5^12*t^8.74)/(g1^2*g2^2*g3^2) + (g4^5*g5^19*t^8.74)/(g1^2*g2^2*g3^2) + (g1^5*g4^19*t^8.76)/(g2^2*g3^2*g5^2) + (3*g1^5*g4^12*g5^5*t^8.76)/(g2^2*g3^2) + (3*g1^5*g4^5*g5^12*t^8.76)/(g2^2*g3^2) + (g1^5*g5^19*t^8.76)/(g2^2*g3^2*g4^2) + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.77 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.77 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.77 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.77 + (g1^12*g4^12*t^8.79)/(g2^2*g3^2*g5^2) + (g2*g3*g4*g5*t^8.79)/g1^20 + (2*g1^12*g4^5*g5^5*t^8.79)/(g2^2*g3^2) + (g1^12*g5^12*t^8.79)/(g2^2*g3^2*g4^2) + g1^15*g2^15*g3^8*g4^8*g5^8*t^8.8 + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.8 + (g1^19*g4^5*t^8.82)/(g2^2*g3^2*g5^2) + (g1^19*g5^5*t^8.82)/(g2^2*g3^2*g4^2) + (g2^5*g4^19*t^8.84)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.84)/(g1^2*g2^2*g5^2) + (2*g2^5*g4^12*g5^5*t^8.84)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.84)/(g1^2*g2^2) + (2*g2^5*g4^5*g5^12*t^8.84)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.84)/(g1^2*g2^2) + (g2^5*g5^19*t^8.84)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.84)/(g1^2*g2^2*g4^2) + (2*g1^5*g2^5*g4^12*t^8.87)/(g3^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.87)/(g2^2*g5^2) + (3*g1^5*g2^5*g4^5*g5^5*t^8.87)/g3^2 + (3*g1^5*g3^5*g4^5*g5^5*t^8.87)/g2^2 + (2*g1^5*g2^5*g5^12*t^8.87)/(g3^2*g4^2) + (2*g1^5*g3^5*g5^12*t^8.87)/(g2^2*g4^2) + (2*g1^12*g2^5*g4^5*t^8.89)/(g3^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.89)/(g2^2*g5^2) + (2*g1^12*g2^5*g5^5*t^8.89)/(g3^2*g4^2) + (2*g1^12*g3^5*g5^5*t^8.89)/(g2^2*g4^2) + (g1^19*g2^5*t^8.92)/(g3^2*g4^2*g5^2) + (g1^19*g3^5*t^8.92)/(g2^2*g4^2*g5^2) + t^8.92/(g1^8*g2^22*g3^22*g4*g5) + (g2^12*g4^12*t^8.94)/(g1^2*g3^2*g5^2) + (g2^5*g3^5*g4^12*t^8.94)/(g1^2*g5^2) + (g3^12*g4^12*t^8.94)/(g1^2*g2^2*g5^2) + (2*g2^12*g4^5*g5^5*t^8.94)/(g1^2*g3^2) + (g2^5*g3^5*g4^5*g5^5*t^8.94)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.94)/(g1^2*g2^2) + (g2^12*g5^12*t^8.94)/(g1^2*g3^2*g4^2) + (g2^5*g3^5*g5^12*t^8.94)/(g1^2*g4^2) + (g3^12*g5^12*t^8.94)/(g1^2*g2^2*g4^2) + (2*g1^5*g2^12*g4^5*t^8.97)/(g3^2*g5^2) + (g1^5*g2^5*g3^5*g4^5*t^8.97)/g5^2 + (2*g1^5*g3^12*g4^5*t^8.97)/(g2^2*g5^2) + (2*g1^5*g2^12*g5^5*t^8.97)/(g3^2*g4^2) + (g1^5*g2^5*g3^5*g5^5*t^8.97)/g4^2 + (2*g1^5*g3^12*g5^5*t^8.97)/(g2^2*g4^2) - t^4.71/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.78/(g1^10*g2^3*g3^3*g4^3*g5^3*y) - t^6.99/(g1^2*g2^9*g3^9*g4^2*g5^2*y) + t^7.36/(g1^8*g2^8*g3^8*g4*g5*y) + (g2^3*g3^3*g4^3*g5^3*t^7.65)/(g1^4*y) + (g1^4*g4^4*g5^4*t^7.86)/(g2^3*g3^3*y) + (g2^5*g3^5*t^8.43)/(g1^2*g4^2*g5^2*y) + (g4^6*g5^6*t^8.58)/(g1^8*g2*g3*y) + (g4^6*t^8.61)/(g1*g2*g3*g5*y) + (g5^6*t^8.61)/(g1*g2*g3*g4*y) + (g1^6*t^8.64)/(g2*g3*g4*g5*y) + (g2^6*g4^6*t^8.69)/(g1^8*g3*g5*y) + (g3^6*g4^6*t^8.69)/(g1^8*g2*g5*y) + (g2^6*g5^6*t^8.69)/(g1^8*g3*g4*y) + (g3^6*g5^6*t^8.69)/(g1^8*g2*g4*y) + (g2^6*t^8.71)/(g1*g3*g4*g5*y) + (g3^6*t^8.71)/(g1*g2*g4*g5*y) + (g4^7*g5^7*t^8.8)/(g2^7*g3^7*y) + (g1^7*g4^7*t^8.82)/(g2^7*g3^7*y) + (g1^7*g5^7*t^8.82)/(g2^7*g3^7*y) - t^8.85/(g1^18*g2^4*g3^4*g4^4*g5^4*y) + (g4^7*t^8.9)/(g2^7*y) + (g4^7*t^8.9)/(g3^7*y) + (g5^7*t^8.9)/(g2^7*y) + (g5^7*t^8.9)/(g3^7*y) + (g1^7*t^8.93)/(g2^7*y) + (g1^7*t^8.93)/(g3^7*y) + (g4^7*t^8.97)/(g1^7*y) + (g5^7*t^8.97)/(g1^7*y) - (t^4.71*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.78*y)/(g1^10*g2^3*g3^3*g4^3*g5^3) - (t^6.99*y)/(g1^2*g2^9*g3^9*g4^2*g5^2) + (t^7.36*y)/(g1^8*g2^8*g3^8*g4*g5) + (g2^3*g3^3*g4^3*g5^3*t^7.65*y)/g1^4 + (g1^4*g4^4*g5^4*t^7.86*y)/(g2^3*g3^3) + (g2^5*g3^5*t^8.43*y)/(g1^2*g4^2*g5^2) + (g4^6*g5^6*t^8.58*y)/(g1^8*g2*g3) + (g4^6*t^8.61*y)/(g1*g2*g3*g5) + (g5^6*t^8.61*y)/(g1*g2*g3*g4) + (g1^6*t^8.64*y)/(g2*g3*g4*g5) + (g2^6*g4^6*t^8.69*y)/(g1^8*g3*g5) + (g3^6*g4^6*t^8.69*y)/(g1^8*g2*g5) + (g2^6*g5^6*t^8.69*y)/(g1^8*g3*g4) + (g3^6*g5^6*t^8.69*y)/(g1^8*g2*g4) + (g2^6*t^8.71*y)/(g1*g3*g4*g5) + (g3^6*t^8.71*y)/(g1*g2*g4*g5) + (g4^7*g5^7*t^8.8*y)/(g2^7*g3^7) + (g1^7*g4^7*t^8.82*y)/(g2^7*g3^7) + (g1^7*g5^7*t^8.82*y)/(g2^7*g3^7) - (t^8.85*y)/(g1^18*g2^4*g3^4*g4^4*g5^4) + (g4^7*t^8.9*y)/g2^7 + (g4^7*t^8.9*y)/g3^7 + (g5^7*t^8.9*y)/g2^7 + (g5^7*t^8.9*y)/g3^7 + (g1^7*t^8.93*y)/g2^7 + (g1^7*t^8.93*y)/g3^7 + (g4^7*t^8.97*y)/g1^7 + (g5^7*t^8.97*y)/g1^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55686 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ 0.8857 1.0964 0.8078 [X:[], M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] t^2.07 + t^2.52 + 6*t^3.55 + 4*t^3.58 + 4*t^3.91 + t^4.13 + t^4.59 + t^5.04 + 10*t^5.29 + 4*t^5.32 + t^5.35 + 6*t^5.62 + 4*t^5.65 - 17*t^6. - t^4.74/y - t^4.74*y detail