Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55442 | SU2adj1nf3 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ | 0.865 | 1.0573 | 0.8182 | [X:[], M:[0.8356], q:[0.7089, 0.5925, 0.5925], qb:[0.5925, 0.5925, 0.5925], phi:[0.5822]] | [X:[], M:[[4, 4, 4, 4, 4]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ q_2q_3$, $ q_1q_2$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ | . | -25 | t^2.51 + 10*t^3.55 + 5*t^3.9 + t^5.01 + 15*t^5.3 - 25*t^6. + 10*t^6.06 - 5*t^6.35 + 5*t^6.41 + 50*t^7.11 - 5*t^7.4 + 40*t^7.46 + t^7.52 - 24*t^7.75 + 15*t^7.81 - 5*t^8.16 + 15*t^8.45 - 26*t^8.51 + 10*t^8.57 + 100*t^8.86 + 5*t^8.92 - t^4.75/y - t^4.75*y | g1^4*g2^4*g3^4*g4^4*g5^4*t^2.51 + g1^7*g2^7*t^3.55 + g1^7*g3^7*t^3.55 + g2^7*g3^7*t^3.55 + g1^7*g4^7*t^3.55 + g2^7*g4^7*t^3.55 + g3^7*g4^7*t^3.55 + g1^7*g5^7*t^3.55 + g2^7*g5^7*t^3.55 + g3^7*g5^7*t^3.55 + g4^7*g5^7*t^3.55 + g1^8*g2*g3*g4*g5*t^3.9 + g1*g2^8*g3*g4*g5*t^3.9 + g1*g2*g3^8*g4*g5*t^3.9 + g1*g2*g3*g4^8*g5*t^3.9 + g1*g2*g3*g4*g5^8*t^3.9 + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.01 + (g1^12*t^5.3)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.3)/(g3^2*g4^2*g5^2) + (g2^12*t^5.3)/(g1^2*g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.3)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.3)/(g1^2*g4^2*g5^2) + (g3^12*t^5.3)/(g1^2*g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.3)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.3)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.3)/(g1^2*g2^2*g5^2) + (g4^12*t^5.3)/(g1^2*g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.3)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.3)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.3)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.3)/(g1^2*g2^2*g3^2) + (g5^12*t^5.3)/(g1^2*g2^2*g3^2*g4^2) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 - (g1^7*t^6.)/g4^7 - (g2^7*t^6.)/g4^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g1^7 - (g4^7*t^6.)/g2^7 - (g4^7*t^6.)/g3^7 - (g1^7*t^6.)/g5^7 - (g2^7*t^6.)/g5^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g1^7 - (g5^7*t^6.)/g2^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 + g1^11*g2^11*g3^4*g4^4*g5^4*t^6.06 + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.06 + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.06 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.06 + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.06 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.06 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.06 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.06 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.06 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.06 - (g1*g2*g3*g4*t^6.35)/g5^6 - (g1*g2*g3*g5*t^6.35)/g4^6 - (g1*g2*g4*g5*t^6.35)/g3^6 - (g1*g3*g4*g5*t^6.35)/g2^6 - (g2*g3*g4*g5*t^6.35)/g1^6 + g1^12*g2^5*g3^5*g4^5*g5^5*t^6.41 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.41 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.41 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.41 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.41 + g1^14*g2^14*t^7.11 + g1^14*g2^7*g3^7*t^7.11 + g1^7*g2^14*g3^7*t^7.11 + g1^14*g3^14*t^7.11 + g1^7*g2^7*g3^14*t^7.11 + g2^14*g3^14*t^7.11 + g1^14*g2^7*g4^7*t^7.11 + g1^7*g2^14*g4^7*t^7.11 + g1^14*g3^7*g4^7*t^7.11 + 2*g1^7*g2^7*g3^7*g4^7*t^7.11 + g2^14*g3^7*g4^7*t^7.11 + g1^7*g3^14*g4^7*t^7.11 + g2^7*g3^14*g4^7*t^7.11 + g1^14*g4^14*t^7.11 + g1^7*g2^7*g4^14*t^7.11 + g2^14*g4^14*t^7.11 + g1^7*g3^7*g4^14*t^7.11 + g2^7*g3^7*g4^14*t^7.11 + g3^14*g4^14*t^7.11 + g1^14*g2^7*g5^7*t^7.11 + g1^7*g2^14*g5^7*t^7.11 + g1^14*g3^7*g5^7*t^7.11 + 2*g1^7*g2^7*g3^7*g5^7*t^7.11 + g2^14*g3^7*g5^7*t^7.11 + g1^7*g3^14*g5^7*t^7.11 + g2^7*g3^14*g5^7*t^7.11 + g1^14*g4^7*g5^7*t^7.11 + 2*g1^7*g2^7*g4^7*g5^7*t^7.11 + g2^14*g4^7*g5^7*t^7.11 + 2*g1^7*g3^7*g4^7*g5^7*t^7.11 + 2*g2^7*g3^7*g4^7*g5^7*t^7.11 + g3^14*g4^7*g5^7*t^7.11 + g1^7*g4^14*g5^7*t^7.11 + g2^7*g4^14*g5^7*t^7.11 + g3^7*g4^14*g5^7*t^7.11 + g1^14*g5^14*t^7.11 + g1^7*g2^7*g5^14*t^7.11 + g2^14*g5^14*t^7.11 + g1^7*g3^7*g5^14*t^7.11 + g2^7*g3^7*g5^14*t^7.11 + g3^14*g5^14*t^7.11 + g1^7*g4^7*g5^14*t^7.11 + g2^7*g4^7*g5^14*t^7.11 + g3^7*g4^7*g5^14*t^7.11 + g4^14*g5^14*t^7.11 - (g1^4*t^7.4)/(g2^3*g3^3*g4^3*g5^3) - (g2^4*t^7.4)/(g1^3*g3^3*g4^3*g5^3) - (g3^4*t^7.4)/(g1^3*g2^3*g4^3*g5^3) - (g4^4*t^7.4)/(g1^3*g2^3*g3^3*g5^3) - (g5^4*t^7.4)/(g1^3*g2^3*g3^3*g4^3) + g1^15*g2^8*g3*g4*g5*t^7.46 + g1^8*g2^15*g3*g4*g5*t^7.46 + g1^15*g2*g3^8*g4*g5*t^7.46 + 2*g1^8*g2^8*g3^8*g4*g5*t^7.46 + g1*g2^15*g3^8*g4*g5*t^7.46 + g1^8*g2*g3^15*g4*g5*t^7.46 + g1*g2^8*g3^15*g4*g5*t^7.46 + g1^15*g2*g3*g4^8*g5*t^7.46 + 2*g1^8*g2^8*g3*g4^8*g5*t^7.46 + g1*g2^15*g3*g4^8*g5*t^7.46 + 2*g1^8*g2*g3^8*g4^8*g5*t^7.46 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.46 + g1*g2*g3^15*g4^8*g5*t^7.46 + g1^8*g2*g3*g4^15*g5*t^7.46 + g1*g2^8*g3*g4^15*g5*t^7.46 + g1*g2*g3^8*g4^15*g5*t^7.46 + g1^15*g2*g3*g4*g5^8*t^7.46 + 2*g1^8*g2^8*g3*g4*g5^8*t^7.46 + g1*g2^15*g3*g4*g5^8*t^7.46 + 2*g1^8*g2*g3^8*g4*g5^8*t^7.46 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.46 + g1*g2*g3^15*g4*g5^8*t^7.46 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.46 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.46 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.46 + g1*g2*g3*g4^15*g5^8*t^7.46 + g1^8*g2*g3*g4*g5^15*t^7.46 + g1*g2^8*g3*g4*g5^15*t^7.46 + g1*g2*g3^8*g4*g5^15*t^7.46 + g1*g2*g3*g4^8*g5^15*t^7.46 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.52 - (g1^5*t^7.75)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.75)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.75)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.75)/(g1^2*g2^2*g3^2*g5^9) - (g1^5*t^7.75)/(g2^2*g3^2*g4^9*g5^2) - (g2^5*t^7.75)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.75)/(g1^2*g2^2*g4^9*g5^2) - (g1^5*t^7.75)/(g2^2*g3^9*g4^2*g5^2) - (g2^5*t^7.75)/(g1^2*g3^9*g4^2*g5^2) - (g1^5*t^7.75)/(g2^9*g3^2*g4^2*g5^2) - (4*t^7.75)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g2^5*t^7.75)/(g1^9*g3^2*g4^2*g5^2) - (g3^5*t^7.75)/(g1^2*g2^9*g4^2*g5^2) - (g3^5*t^7.75)/(g1^9*g2^2*g4^2*g5^2) - (g4^5*t^7.75)/(g1^2*g2^2*g3^9*g5^2) - (g4^5*t^7.75)/(g1^2*g2^9*g3^2*g5^2) - (g4^5*t^7.75)/(g1^9*g2^2*g3^2*g5^2) - (g5^5*t^7.75)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.75)/(g1^2*g2^2*g3^9*g4^2) - (g5^5*t^7.75)/(g1^2*g2^9*g3^2*g4^2) - (g5^5*t^7.75)/(g1^9*g2^2*g3^2*g4^2) + g1^16*g2^2*g3^2*g4^2*g5^2*t^7.81 + g1^9*g2^9*g3^2*g4^2*g5^2*t^7.81 + g1^2*g2^16*g3^2*g4^2*g5^2*t^7.81 + g1^9*g2^2*g3^9*g4^2*g5^2*t^7.81 + g1^2*g2^9*g3^9*g4^2*g5^2*t^7.81 + g1^2*g2^2*g3^16*g4^2*g5^2*t^7.81 + g1^9*g2^2*g3^2*g4^9*g5^2*t^7.81 + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.81 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.81 + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.81 + g1^9*g2^2*g3^2*g4^2*g5^9*t^7.81 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.81 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.81 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.81 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.81 - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.16 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.16 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.16 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.16 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.16 + t^8.45/g1^14 + t^8.45/g2^14 + t^8.45/(g1^7*g2^7) + t^8.45/g3^14 + t^8.45/(g1^7*g3^7) + t^8.45/(g2^7*g3^7) + t^8.45/g4^14 + t^8.45/(g1^7*g4^7) + t^8.45/(g2^7*g4^7) + t^8.45/(g3^7*g4^7) + t^8.45/g5^14 + t^8.45/(g1^7*g5^7) + t^8.45/(g2^7*g5^7) + t^8.45/(g3^7*g5^7) + t^8.45/(g4^7*g5^7) - (g1^11*g2^4*g3^4*g4^4*t^8.51)/g5^3 - (g1^4*g2^11*g3^4*g4^4*t^8.51)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.51)/g5^3 - (g1^4*g2^4*g3^4*g4^11*t^8.51)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.51)/g4^3 - (g1^4*g2^11*g3^4*g5^4*t^8.51)/g4^3 - (g1^4*g2^4*g3^11*g5^4*t^8.51)/g4^3 - (g1^11*g2^4*g4^4*g5^4*t^8.51)/g3^3 - (g1^4*g2^11*g4^4*g5^4*t^8.51)/g3^3 - (g1^11*g3^4*g4^4*g5^4*t^8.51)/g2^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.51 - (g2^11*g3^4*g4^4*g5^4*t^8.51)/g1^3 - (g1^4*g3^11*g4^4*g5^4*t^8.51)/g2^3 - (g2^4*g3^11*g4^4*g5^4*t^8.51)/g1^3 - (g1^4*g2^4*g4^11*g5^4*t^8.51)/g3^3 - (g1^4*g3^4*g4^11*g5^4*t^8.51)/g2^3 - (g2^4*g3^4*g4^11*g5^4*t^8.51)/g1^3 - (g1^4*g2^4*g3^4*g5^11*t^8.51)/g4^3 - (g1^4*g2^4*g4^4*g5^11*t^8.51)/g3^3 - (g1^4*g3^4*g4^4*g5^11*t^8.51)/g2^3 - (g2^4*g3^4*g4^4*g5^11*t^8.51)/g1^3 + g1^15*g2^15*g3^8*g4^8*g5^8*t^8.57 + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.57 + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.57 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.57 + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.57 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.57 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.57 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.57 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.57 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.57 + (g1^19*g2^5*t^8.86)/(g3^2*g4^2*g5^2) + (g1^12*g2^12*t^8.86)/(g3^2*g4^2*g5^2) + (g1^5*g2^19*t^8.86)/(g3^2*g4^2*g5^2) + (g1^19*g3^5*t^8.86)/(g2^2*g4^2*g5^2) + (2*g1^12*g2^5*g3^5*t^8.86)/(g4^2*g5^2) + (2*g1^5*g2^12*g3^5*t^8.86)/(g4^2*g5^2) + (g2^19*g3^5*t^8.86)/(g1^2*g4^2*g5^2) + (g1^12*g3^12*t^8.86)/(g2^2*g4^2*g5^2) + (2*g1^5*g2^5*g3^12*t^8.86)/(g4^2*g5^2) + (g2^12*g3^12*t^8.86)/(g1^2*g4^2*g5^2) + (g1^5*g3^19*t^8.86)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.86)/(g1^2*g4^2*g5^2) + (g1^19*g4^5*t^8.86)/(g2^2*g3^2*g5^2) + (2*g1^12*g2^5*g4^5*t^8.86)/(g3^2*g5^2) + (2*g1^5*g2^12*g4^5*t^8.86)/(g3^2*g5^2) + (g2^19*g4^5*t^8.86)/(g1^2*g3^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.86)/(g2^2*g5^2) + (2*g1^5*g2^5*g3^5*g4^5*t^8.86)/g5^2 + (2*g2^12*g3^5*g4^5*t^8.86)/(g1^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.86)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.86)/(g1^2*g5^2) + (g3^19*g4^5*t^8.86)/(g1^2*g2^2*g5^2) + (g1^12*g4^12*t^8.86)/(g2^2*g3^2*g5^2) + (2*g1^5*g2^5*g4^12*t^8.86)/(g3^2*g5^2) + (g2^12*g4^12*t^8.86)/(g1^2*g3^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.86)/(g2^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.86)/(g1^2*g5^2) + (g3^12*g4^12*t^8.86)/(g1^2*g2^2*g5^2) + (g1^5*g4^19*t^8.86)/(g2^2*g3^2*g5^2) + (g2^5*g4^19*t^8.86)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.86)/(g1^2*g2^2*g5^2) + (g1^19*g5^5*t^8.86)/(g2^2*g3^2*g4^2) + (2*g1^12*g2^5*g5^5*t^8.86)/(g3^2*g4^2) + (2*g1^5*g2^12*g5^5*t^8.86)/(g3^2*g4^2) + (g2^19*g5^5*t^8.86)/(g1^2*g3^2*g4^2) + (2*g1^12*g3^5*g5^5*t^8.86)/(g2^2*g4^2) + (2*g1^5*g2^5*g3^5*g5^5*t^8.86)/g4^2 + (2*g2^12*g3^5*g5^5*t^8.86)/(g1^2*g4^2) + (2*g1^5*g3^12*g5^5*t^8.86)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.86)/(g1^2*g4^2) + (g3^19*g5^5*t^8.86)/(g1^2*g2^2*g4^2) + (2*g1^12*g4^5*g5^5*t^8.86)/(g2^2*g3^2) + (2*g1^5*g2^5*g4^5*g5^5*t^8.86)/g3^2 + (2*g2^12*g4^5*g5^5*t^8.86)/(g1^2*g3^2) + (2*g1^5*g3^5*g4^5*g5^5*t^8.86)/g2^2 + (2*g2^5*g3^5*g4^5*g5^5*t^8.86)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.86)/(g1^2*g2^2) + (2*g1^5*g4^12*g5^5*t^8.86)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.86)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.86)/(g1^2*g2^2) + (g4^19*g5^5*t^8.86)/(g1^2*g2^2*g3^2) + (g1^12*g5^12*t^8.86)/(g2^2*g3^2*g4^2) + (2*g1^5*g2^5*g5^12*t^8.86)/(g3^2*g4^2) + (g2^12*g5^12*t^8.86)/(g1^2*g3^2*g4^2) + (2*g1^5*g3^5*g5^12*t^8.86)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.86)/(g1^2*g4^2) + (g3^12*g5^12*t^8.86)/(g1^2*g2^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.86)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.86)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.86)/(g1^2*g2^2) + (g4^12*g5^12*t^8.86)/(g1^2*g2^2*g3^2) + (g1^5*g5^19*t^8.86)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.86)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.86)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.86)/(g1^2*g2^2*g3^2) + g1^16*g2^9*g3^9*g4^9*g5^9*t^8.92 + g1^9*g2^16*g3^9*g4^9*g5^9*t^8.92 + g1^9*g2^9*g3^16*g4^9*g5^9*t^8.92 + g1^9*g2^9*g3^9*g4^16*g5^9*t^8.92 + g1^9*g2^9*g3^9*g4^9*g5^16*t^8.92 - t^4.75/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - (t^4.75*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55686 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_1q_2$ | 0.8857 | 1.0964 | 0.8078 | [X:[], M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] | t^2.07 + t^2.52 + 6*t^3.55 + 4*t^3.58 + 4*t^3.91 + t^4.13 + t^4.59 + t^5.04 + 10*t^5.29 + 4*t^5.32 + t^5.35 + 6*t^5.62 + 4*t^5.65 - 17*t^6. - t^4.74/y - t^4.74*y | detail | |
55599 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ | 0.8824 | 1.0853 | 0.813 | [X:[], M:[0.8549, 0.7609], q:[0.7137, 0.6196, 0.6196], qb:[0.5856, 0.5856, 0.5856], phi:[0.5726]] | t^2.28 + t^2.56 + 3*t^3.51 + 6*t^3.62 + 3*t^3.9 + 2*t^4. + t^4.57 + t^4.85 + t^5.13 + 6*t^5.23 + 6*t^5.33 + 3*t^5.44 + 3*t^5.8 - 13*t^6. - t^4.72/y - t^4.72*y | detail | |
55669 | $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2$ | 0.7003 | 0.8367 | 0.837 | [X:[], M:[1.0907], q:[0.7727, 1.2273, 0.5454], qb:[0.5454, 0.5454, 0.5454], phi:[0.4546]] | 7*t^3.27 + 10*t^4.64 - 16*t^6. - t^4.36/y - t^4.36*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55429 | SU2adj1nf3 | $\phi_1q_1^2$ | 0.8526 | 1.0268 | 0.8304 | [X:[], M:[], q:[0.7213, 0.6098, 0.6098], qb:[0.6098, 0.6098, 0.6098], phi:[0.5574]] | t^3.34 + 10*t^3.66 + 5*t^3.99 + 15*t^5.33 - 25*t^6. - t^4.67/y - t^4.67*y | detail |