Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55702 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ | 0.8748 | 1.0805 | 0.8096 | [X:[], M:[0.8587, 0.7032], q:[0.7147, 0.5822, 0.5686], qb:[0.5686, 0.7147, 0.5686], phi:[0.5707]] | [X:[], M:[[0, 0, 4, 0], [1, 1, -7, 1]], q:[[0, 0, 1, 0], [-1, -1, 6, -1], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, -2, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$ | ${}\phi_{1}\tilde{q}_{2}^{2}$ | -10 | t^2.11 + t^2.58 + 3*t^3.41 + 3*t^3.45 + 6*t^3.85 + t^3.89 + t^4.22 + t^4.29 + t^4.69 + 6*t^5.12 + t^5.15 + 3*t^5.16 + t^5.2 + 3*t^5.52 + 3*t^5.56 + 3*t^5.96 + 3*t^5.99 - 10*t^6. + 3*t^6.03 - 3*t^6.04 + t^6.33 - t^6.4 + 6*t^6.43 - 6*t^6.44 + t^6.47 + t^6.8 + 6*t^6.82 + 9*t^6.86 + 6*t^6.9 + 6*t^7.23 + 17*t^7.26 - 3*t^7.27 + 15*t^7.3 - t^7.31 + 3*t^7.34 + 3*t^7.63 + 21*t^7.7 - 10*t^7.71 + t^7.73 + 6*t^7.74 - 3*t^7.75 + t^7.78 + 3*t^8.07 + 3*t^8.1 - 10*t^8.11 + 3*t^8.14 - 3*t^8.15 - t^8.18 + t^8.44 + 18*t^8.54 - 3*t^8.55 + 3*t^8.56 + 6*t^8.58 + 6*t^8.59 + 3*t^8.6 + 6*t^8.62 + 3*t^8.66 + t^8.9 + 6*t^8.93 + 27*t^8.97 - t^4.71/y - t^6.82/y + t^7.69/y + (3*t^8.52)/y + (3*t^8.56)/y + t^8.6/y - t^8.93/y + (6*t^8.96)/y + (3*t^8.99)/y - t^4.71*y - t^6.82*y + t^7.69*y + 3*t^8.52*y + 3*t^8.56*y + t^8.6*y - t^8.93*y + 6*t^8.96*y + 3*t^8.99*y | (g1*g2*g4*t^2.11)/g3^7 + g3^4*t^2.58 + g1*g2*t^3.41 + g1*g4*t^3.41 + g2*g4*t^3.41 + (g3^6*t^3.45)/(g1*g2) + (g3^6*t^3.45)/(g1*g4) + (g3^6*t^3.45)/(g2*g4) + 2*g1*g3*t^3.85 + 2*g2*g3*t^3.85 + 2*g3*g4*t^3.85 + (g3^7*t^3.89)/(g1*g2*g4) + (g1^2*g2^2*g4^2*t^4.22)/g3^14 + g3^2*t^4.29 + (g1*g2*g4*t^4.69)/g3^3 + (g1^2*t^5.12)/g3^2 + (g1*g2*t^5.12)/g3^2 + (g2^2*t^5.12)/g3^2 + (g1*g4*t^5.12)/g3^2 + (g2*g4*t^5.12)/g3^2 + (g4^2*t^5.12)/g3^2 + g3^8*t^5.15 + (g3^4*t^5.16)/(g1*g2) + (g3^4*t^5.16)/(g1*g4) + (g3^4*t^5.16)/(g2*g4) + (g3^10*t^5.2)/(g1^2*g2^2*g4^2) + (g1^2*g2^2*g4*t^5.52)/g3^7 + (g1^2*g2*g4^2*t^5.52)/g3^7 + (g1*g2^2*g4^2*t^5.52)/g3^7 + (g1*t^5.56)/g3 + (g2*t^5.56)/g3 + (g4*t^5.56)/g3 + (g1^2*g2*g4*t^5.96)/g3^6 + (g1*g2^2*g4*t^5.96)/g3^6 + (g1*g2*g4^2*t^5.96)/g3^6 + g1*g2*g3^4*t^5.99 + g1*g3^4*g4*t^5.99 + g2*g3^4*g4*t^5.99 - 4*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 - (g1*t^6.)/g4 - (g2*t^6.)/g4 - (g4*t^6.)/g1 - (g4*t^6.)/g2 + (g3^10*t^6.03)/(g1*g2) + (g3^10*t^6.03)/(g1*g4) + (g3^10*t^6.03)/(g2*g4) - (g3^6*t^6.04)/(g1*g2*g4^2) - (g3^6*t^6.04)/(g1*g2^2*g4) - (g3^6*t^6.04)/(g1^2*g2*g4) + (g1^3*g2^3*g4^3*t^6.33)/g3^21 - (g1*g2*g4*t^6.4)/g3^5 + 2*g1*g3^5*t^6.43 + 2*g2*g3^5*t^6.43 + 2*g3^5*g4*t^6.43 - (2*g3*t^6.44)/g1 - (2*g3*t^6.44)/g2 - (2*g3*t^6.44)/g4 + (g3^11*t^6.47)/(g1*g2*g4) + (g1^2*g2^2*g4^2*t^6.8)/g3^10 + g1^2*g2^2*t^6.82 + g1^2*g2*g4*t^6.82 + g1*g2^2*g4*t^6.82 + g1^2*g4^2*t^6.82 + g1*g2*g4^2*t^6.82 + g2^2*g4^2*t^6.82 + 3*g3^6*t^6.86 + (g1*g3^6*t^6.86)/g2 + (g2*g3^6*t^6.86)/g1 + (g1*g3^6*t^6.86)/g4 + (g2*g3^6*t^6.86)/g4 + (g3^6*g4*t^6.86)/g1 + (g3^6*g4*t^6.86)/g2 + (g3^12*t^6.9)/(g1^2*g2^2) + (g3^12*t^6.9)/(g1^2*g4^2) + (g3^12*t^6.9)/(g2^2*g4^2) + (g3^12*t^6.9)/(g1*g2*g4^2) + (g3^12*t^6.9)/(g1*g2^2*g4) + (g3^12*t^6.9)/(g1^2*g2*g4) + (g1^3*g2*g4*t^7.23)/g3^9 + (g1^2*g2^2*g4*t^7.23)/g3^9 + (g1*g2^3*g4*t^7.23)/g3^9 + (g1^2*g2*g4^2*t^7.23)/g3^9 + (g1*g2^2*g4^2*t^7.23)/g3^9 + (g1*g2*g4^3*t^7.23)/g3^9 + 2*g1^2*g2*g3*t^7.26 + 2*g1*g2^2*g3*t^7.26 + 2*g1^2*g3*g4*t^7.26 + 5*g1*g2*g3*g4*t^7.26 + 2*g2^2*g3*g4*t^7.26 + 2*g1*g3*g4^2*t^7.26 + 2*g2*g3*g4^2*t^7.26 - (g1*t^7.27)/g3^3 - (g2*t^7.27)/g3^3 - (g4*t^7.27)/g3^3 + (3*g3^7*t^7.3)/g1 + (3*g3^7*t^7.3)/g2 + (3*g3^7*t^7.3)/g4 + (2*g1*g3^7*t^7.3)/(g2*g4) + (2*g2*g3^7*t^7.3)/(g1*g4) + (2*g3^7*g4*t^7.3)/(g1*g2) - (g3^3*t^7.31)/(g1*g2*g4) + (g3^13*t^7.34)/(g1*g2^2*g4^2) + (g3^13*t^7.34)/(g1^2*g2*g4^2) + (g3^13*t^7.34)/(g1^2*g2^2*g4) + (g1^3*g2^3*g4^2*t^7.63)/g3^14 + (g1^3*g2^2*g4^3*t^7.63)/g3^14 + (g1^2*g2^3*g4^3*t^7.63)/g3^14 + 3*g1^2*g3^2*t^7.7 + 4*g1*g2*g3^2*t^7.7 + 3*g2^2*g3^2*t^7.7 + 4*g1*g3^2*g4*t^7.7 + 4*g2*g3^2*g4*t^7.7 + 3*g3^2*g4^2*t^7.7 - (4*t^7.71)/g3^2 - (g1*t^7.71)/(g2*g3^2) - (g2*t^7.71)/(g1*g3^2) - (g1*t^7.71)/(g3^2*g4) - (g2*t^7.71)/(g3^2*g4) - (g4*t^7.71)/(g1*g3^2) - (g4*t^7.71)/(g2*g3^2) + g3^12*t^7.73 + (2*g3^8*t^7.74)/(g1*g2) + (2*g3^8*t^7.74)/(g1*g4) + (2*g3^8*t^7.74)/(g2*g4) - (g3^4*t^7.75)/(g1*g2*g4^2) - (g3^4*t^7.75)/(g1*g2^2*g4) - (g3^4*t^7.75)/(g1^2*g2*g4) + (g3^14*t^7.78)/(g1^2*g2^2*g4^2) + (g1^3*g2^2*g4^2*t^8.07)/g3^13 + (g1^2*g2^3*g4^2*t^8.07)/g3^13 + (g1^2*g2^2*g4^3*t^8.07)/g3^13 + (g1^2*g2^2*g4*t^8.1)/g3^3 + (g1^2*g2*g4^2*t^8.1)/g3^3 + (g1*g2^2*g4^2*t^8.1)/g3^3 - (g1^2*g2*t^8.11)/g3^7 - (g1*g2^2*t^8.11)/g3^7 - (g1^2*g4*t^8.11)/g3^7 - (4*g1*g2*g4*t^8.11)/g3^7 - (g2^2*g4*t^8.11)/g3^7 - (g1*g4^2*t^8.11)/g3^7 - (g2*g4^2*t^8.11)/g3^7 + g1*g3^3*t^8.14 + g2*g3^3*t^8.14 + g3^3*g4*t^8.14 - t^8.15/(g1*g3) - t^8.15/(g2*g3) - t^8.15/(g3*g4) - (g3^9*t^8.18)/(g1*g2*g4) + (g1^4*g2^4*g4^4*t^8.44)/g3^28 + (g1^3*g2*t^8.54)/g3^2 + (g1^2*g2^2*t^8.54)/g3^2 + (g1*g2^3*t^8.54)/g3^2 + (g1^3*g4*t^8.54)/g3^2 + (3*g1^2*g2*g4*t^8.54)/g3^2 + (3*g1*g2^2*g4*t^8.54)/g3^2 + (g2^3*g4*t^8.54)/g3^2 + (g1^2*g4^2*t^8.54)/g3^2 + (3*g1*g2*g4^2*t^8.54)/g3^2 + (g2^2*g4^2*t^8.54)/g3^2 + (g1*g4^3*t^8.54)/g3^2 + (g2*g4^3*t^8.54)/g3^2 - (g1*g2*t^8.55)/g3^6 - (g1*g4*t^8.55)/g3^6 - (g2*g4*t^8.55)/g3^6 + g1*g2*g3^8*t^8.56 + g1*g3^8*g4*t^8.56 + g2*g3^8*g4*t^8.56 - 3*g3^4*t^8.58 + (g1*g3^4*t^8.58)/g2 + (g2*g3^4*t^8.58)/g1 + (g1*g3^4*t^8.58)/g4 + (g1^2*g3^4*t^8.58)/(g2*g4) + (g2*g3^4*t^8.58)/g4 + (g2^2*g3^4*t^8.58)/(g1*g4) + (g3^4*g4*t^8.58)/g1 + (g3^4*g4*t^8.58)/g2 + (g3^4*g4^2*t^8.58)/(g1*g2) + t^8.59/g1^2 + t^8.59/g2^2 + t^8.59/(g1*g2) + t^8.59/g4^2 + t^8.59/(g1*g4) + t^8.59/(g2*g4) + (g3^14*t^8.6)/(g1*g2) + (g3^14*t^8.6)/(g1*g4) + (g3^14*t^8.6)/(g2*g4) + (g3^10*t^8.62)/(g1^2*g2^2) + (g3^10*t^8.62)/(g1^2*g4^2) + (g3^10*t^8.62)/(g2^2*g4^2) + (g3^10*t^8.62)/(g1*g2*g4^2) + (g3^10*t^8.62)/(g1*g2^2*g4) + (g3^10*t^8.62)/(g1^2*g2*g4) + (g3^16*t^8.66)/(g1^2*g2^3*g4^3) + (g3^16*t^8.66)/(g1^3*g2^2*g4^3) + (g3^16*t^8.66)/(g1^3*g2^3*g4^2) + (g1^3*g2^3*g4^3*t^8.9)/g3^17 + (g1^3*g2^3*g4*t^8.93)/g3^7 + (g1^3*g2^2*g4^2*t^8.93)/g3^7 + (g1^2*g2^3*g4^2*t^8.93)/g3^7 + (g1^3*g2*g4^3*t^8.93)/g3^7 + (g1^2*g2^2*g4^3*t^8.93)/g3^7 + (g1*g2^3*g4^3*t^8.93)/g3^7 + (2*g1^3*t^8.97)/g3 + (3*g1^2*g2*t^8.97)/g3 + (3*g1*g2^2*t^8.97)/g3 + (2*g2^3*t^8.97)/g3 + (3*g1^2*g4*t^8.97)/g3 + (3*g1*g2*g4*t^8.97)/g3 + (3*g2^2*g4*t^8.97)/g3 + (3*g1*g4^2*t^8.97)/g3 + (3*g2*g4^2*t^8.97)/g3 + (2*g4^3*t^8.97)/g3 - t^4.71/(g3^2*y) - (g1*g2*g4*t^6.82)/(g3^9*y) + (g1*g2*g4*t^7.69)/(g3^3*y) + (g1^2*g2^2*g4*t^8.52)/(g3^7*y) + (g1^2*g2*g4^2*t^8.52)/(g3^7*y) + (g1*g2^2*g4^2*t^8.52)/(g3^7*y) + (g1*t^8.56)/(g3*y) + (g2*t^8.56)/(g3*y) + (g4*t^8.56)/(g3*y) + (g3^5*t^8.6)/(g1*g2*g4*y) - (g1^2*g2^2*g4^2*t^8.93)/(g3^16*y) + (2*g1^2*g2*g4*t^8.96)/(g3^6*y) + (2*g1*g2^2*g4*t^8.96)/(g3^6*y) + (2*g1*g2*g4^2*t^8.96)/(g3^6*y) + (g1*g2*g3^4*t^8.99)/y + (g1*g3^4*g4*t^8.99)/y + (g2*g3^4*g4*t^8.99)/y - (t^4.71*y)/g3^2 - (g1*g2*g4*t^6.82*y)/g3^9 + (g1*g2*g4*t^7.69*y)/g3^3 + (g1^2*g2^2*g4*t^8.52*y)/g3^7 + (g1^2*g2*g4^2*t^8.52*y)/g3^7 + (g1*g2^2*g4^2*t^8.52*y)/g3^7 + (g1*t^8.56*y)/g3 + (g2*t^8.56*y)/g3 + (g4*t^8.56*y)/g3 + (g3^5*t^8.6*y)/(g1*g2*g4) - (g1^2*g2^2*g4^2*t^8.93*y)/g3^16 + (2*g1^2*g2*g4*t^8.96*y)/g3^6 + (2*g1*g2^2*g4*t^8.96*y)/g3^6 + (2*g1*g2*g4^2*t^8.96*y)/g3^6 + g1*g2*g3^4*t^8.99*y + g1*g3^4*g4*t^8.99*y + g2*g3^4*g4*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55686 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ | 0.8857 | 1.0964 | 0.8078 | [X:[], M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] | t^2.07 + t^2.52 + 6*t^3.55 + 4*t^3.58 + 4*t^3.91 + t^4.13 + t^4.59 + t^5.04 + 10*t^5.29 + 4*t^5.32 + t^5.35 + 6*t^5.62 + 4*t^5.65 - 17*t^6. - t^4.74/y - t^4.74*y | detail |