Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55705 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ | 0.8562 | 1.0535 | 0.8127 | [M:[0.8904, 0.7265], q:[0.7226, 0.5509, 0.7226], qb:[0.7226, 0.5311, 0.5311], phi:[0.5548]] | [M:[[4, 4, 0, 0], [-6, -6, 1, 1]], q:[[1, 1, 0, 0], [5, 5, -1, -1], [2, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[-2, -2, 0, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{2}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{2}\tilde{q}_{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{3}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$ | ${}M_{2}q_{2}q_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ | -6 | t^2.18 + t^2.671 + t^3.187 + 2*t^3.246 + 6*t^3.761 + 2*t^3.82 + 3*t^4.336 + t^4.359 + 4*t^4.851 + 2*t^4.91 + t^4.97 + t^5.343 + t^5.366 + 2*t^5.425 + t^5.858 + 2*t^5.917 + 4*t^5.941 - 6*t^6. - 2*t^6.059 + t^6.373 + 8*t^6.432 + 5*t^6.492 + t^6.539 - 6*t^6.575 + 6*t^6.948 + 14*t^7.007 + 4*t^7.03 + 4*t^7.066 - 4*t^7.09 - 2*t^7.149 + 22*t^7.522 + t^7.546 + 12*t^7.581 + 3*t^7.641 - 7*t^7.664 - 2*t^7.724 + t^8.014 + 4*t^8.037 + 18*t^8.097 + 4*t^8.12 + 6*t^8.156 - 6*t^8.18 + 2*t^8.215 - 2*t^8.239 + t^8.529 + t^8.553 + 2*t^8.588 + 18*t^8.612 + 3*t^8.671 + t^8.695 + t^8.718 + 2*t^8.731 - 4*t^8.754 + 2*t^8.79 + 3*t^8.813 - t^4.664/y - t^6.844/y + t^7.851/y + t^8.366/y + (2*t^8.425)/y + t^8.485/y + t^8.858/y + (2*t^8.917)/y + (6*t^8.941)/y - t^4.664*y - t^6.844*y + t^7.851*y + t^8.366*y + 2*t^8.425*y + t^8.485*y + t^8.858*y + 2*t^8.917*y + 6*t^8.941*y | (g3*g4*t^2.18)/(g1^6*g2^6) + g1^4*g2^4*t^2.671 + g3*g4*t^3.187 + (g1^5*g2^5*t^3.246)/g3 + (g1^5*g2^5*t^3.246)/g4 + g1^2*g3*t^3.761 + g1*g2*g3*t^3.761 + g2^2*g3*t^3.761 + g1^2*g4*t^3.761 + g1*g2*g4*t^3.761 + g2^2*g4*t^3.761 + (g1^7*g2^5*t^3.82)/(g3*g4) + (g1^5*g2^7*t^3.82)/(g3*g4) + g1^3*g2*t^4.336 + g1^2*g2^2*t^4.336 + g1*g2^3*t^4.336 + (g3^2*g4^2*t^4.359)/(g1^12*g2^12) + (g3^2*t^4.851)/(g1^2*g2^2) + (2*g3*g4*t^4.851)/(g1^2*g2^2) + (g4^2*t^4.851)/(g1^2*g2^2) + (g1^3*g2^3*t^4.91)/g3 + (g1^3*g2^3*t^4.91)/g4 + (g1^8*g2^8*t^4.97)/(g3^2*g4^2) + g1^8*g2^8*t^5.343 + (g3^2*g4^2*t^5.366)/(g1^6*g2^6) + (g3*t^5.425)/(g1*g2) + (g4*t^5.425)/(g1*g2) + g1^4*g2^4*g3*g4*t^5.858 + (g1^9*g2^9*t^5.917)/g3 + (g1^9*g2^9*t^5.917)/g4 + (g3^2*g4*t^5.941)/(g1^4*g2^6) + (g3^2*g4*t^5.941)/(g1^6*g2^4) + (g3*g4^2*t^5.941)/(g1^4*g2^6) + (g3*g4^2*t^5.941)/(g1^6*g2^4) - 4*t^6. - (g3*t^6.)/g4 - (g4*t^6.)/g3 - (g1^5*g2^5*t^6.059)/(g3*g4^2) - (g1^5*g2^5*t^6.059)/(g3^2*g4) + g3^2*g4^2*t^6.373 + g1^6*g2^4*g3*t^6.432 + 2*g1^5*g2^5*g3*t^6.432 + g1^4*g2^6*g3*t^6.432 + g1^6*g2^4*g4*t^6.432 + 2*g1^5*g2^5*g4*t^6.432 + g1^4*g2^6*g4*t^6.432 + (g1^10*g2^10*t^6.492)/g3^2 + (g1^10*g2^10*t^6.492)/g4^2 + (g1^11*g2^9*t^6.492)/(g3*g4) + (g1^10*g2^10*t^6.492)/(g3*g4) + (g1^9*g2^11*t^6.492)/(g3*g4) + (g3^3*g4^3*t^6.539)/(g1^18*g2^18) - (g1^2*t^6.575)/g3 - (g1*g2*t^6.575)/g3 - (g2^2*t^6.575)/g3 - (g1^2*t^6.575)/g4 - (g1*g2*t^6.575)/g4 - (g2^2*t^6.575)/g4 + g1^2*g3^2*g4*t^6.948 + g1*g2*g3^2*g4*t^6.948 + g2^2*g3^2*g4*t^6.948 + g1^2*g3*g4^2*t^6.948 + g1*g2*g3*g4^2*t^6.948 + g2^2*g3*g4^2*t^6.948 + 3*g1^7*g2^5*t^7.007 + 2*g1^6*g2^6*t^7.007 + 3*g1^5*g2^7*t^7.007 + (g1^7*g2^5*g3*t^7.007)/g4 + (g1^6*g2^6*g3*t^7.007)/g4 + (g1^5*g2^7*g3*t^7.007)/g4 + (g1^7*g2^5*g4*t^7.007)/g3 + (g1^6*g2^6*g4*t^7.007)/g3 + (g1^5*g2^7*g4*t^7.007)/g3 + (g3^3*g4*t^7.03)/(g1^8*g2^8) + (2*g3^2*g4^2*t^7.03)/(g1^8*g2^8) + (g3*g4^3*t^7.03)/(g1^8*g2^8) + (g1^12*g2^10*t^7.066)/(g3*g4^2) + (g1^10*g2^12*t^7.066)/(g3*g4^2) + (g1^12*g2^10*t^7.066)/(g3^2*g4) + (g1^10*g2^12*t^7.066)/(g3^2*g4) - (g3*t^7.09)/(g1^2*g2^4) - (g3*t^7.09)/(g1^4*g2^2) - (g4*t^7.09)/(g1^2*g2^4) - (g4*t^7.09)/(g1^4*g2^2) - (g1^3*g2*t^7.149)/(g3*g4) - (g1*g2^3*t^7.149)/(g3*g4) + g1^4*g3^2*t^7.522 + g1^3*g2*g3^2*t^7.522 + 2*g1^2*g2^2*g3^2*t^7.522 + g1*g2^3*g3^2*t^7.522 + g2^4*g3^2*t^7.522 + g1^4*g3*g4*t^7.522 + 2*g1^3*g2*g3*g4*t^7.522 + 4*g1^2*g2^2*g3*g4*t^7.522 + 2*g1*g2^3*g3*g4*t^7.522 + g2^4*g3*g4*t^7.522 + g1^4*g4^2*t^7.522 + g1^3*g2*g4^2*t^7.522 + 2*g1^2*g2^2*g4^2*t^7.522 + g1*g2^3*g4^2*t^7.522 + g2^4*g4^2*t^7.522 + (g3^3*g4^3*t^7.546)/(g1^12*g2^12) + (g1^9*g2^5*t^7.581)/g3 + (g1^8*g2^6*t^7.581)/g3 + (2*g1^7*g2^7*t^7.581)/g3 + (g1^6*g2^8*t^7.581)/g3 + (g1^5*g2^9*t^7.581)/g3 + (g1^9*g2^5*t^7.581)/g4 + (g1^8*g2^6*t^7.581)/g4 + (2*g1^7*g2^7*t^7.581)/g4 + (g1^6*g2^8*t^7.581)/g4 + (g1^5*g2^9*t^7.581)/g4 + (g1^14*g2^10*t^7.641)/(g3^2*g4^2) + (g1^12*g2^12*t^7.641)/(g3^2*g4^2) + (g1^10*g2^14*t^7.641)/(g3^2*g4^2) - t^7.664/(g1*g2^3) - (3*t^7.664)/(g1^2*g2^2) - t^7.664/(g1^3*g2) - (g3*t^7.664)/(g1^2*g2^2*g4) - (g4*t^7.664)/(g1^2*g2^2*g3) - (g1^3*g2^3*t^7.724)/(g3*g4^2) - (g1^3*g2^3*t^7.724)/(g3^2*g4) + g1^12*g2^12*t^8.014 + (g3^3*g4*t^8.037)/(g1^2*g2^2) + (2*g3^2*g4^2*t^8.037)/(g1^2*g2^2) + (g3*g4^3*t^8.037)/(g1^2*g2^2) + g1^5*g2*g3*t^8.097 + g1^4*g2^2*g3*t^8.097 + 4*g1^3*g2^3*g3*t^8.097 + g1^2*g2^4*g3*t^8.097 + g1*g2^5*g3*t^8.097 + (g1^3*g2^3*g3^2*t^8.097)/g4 + g1^5*g2*g4*t^8.097 + g1^4*g2^2*g4*t^8.097 + 4*g1^3*g2^3*g4*t^8.097 + g1^2*g2^4*g4*t^8.097 + g1*g2^5*g4*t^8.097 + (g1^3*g2^3*g4^2*t^8.097)/g3 + (g3^3*g4^2*t^8.12)/(g1^10*g2^12) + (g3^3*g4^2*t^8.12)/(g1^12*g2^10) + (g3^2*g4^3*t^8.12)/(g1^10*g2^12) + (g3^2*g4^3*t^8.12)/(g1^12*g2^10) + (g1^8*g2^8*t^8.156)/g3^2 + (g1^8*g2^8*t^8.156)/g4^2 + (g1^10*g2^6*t^8.156)/(g3*g4) + (2*g1^8*g2^8*t^8.156)/(g3*g4) + (g1^6*g2^10*t^8.156)/(g3*g4) - (g3^2*t^8.18)/(g1^6*g2^6) - (4*g3*g4*t^8.18)/(g1^6*g2^6) - (g4^2*t^8.18)/(g1^6*g2^6) + (g1^13*g2^13*t^8.215)/(g3^2*g4^3) + (g1^13*g2^13*t^8.215)/(g3^3*g4^2) - t^8.239/(g1*g2*g3) - t^8.239/(g1*g2*g4) + g1^8*g2^8*g3*g4*t^8.529 + (g3^3*g4^3*t^8.553)/(g1^6*g2^6) + (g1^13*g2^13*t^8.588)/g3 + (g1^13*g2^13*t^8.588)/g4 + (g3^3*t^8.612)/g1^2 + (g3^3*t^8.612)/g2^2 + (g3^3*t^8.612)/(g1*g2) + (2*g3^2*g4*t^8.612)/g1^2 + (2*g3^2*g4*t^8.612)/g2^2 + (2*g3^2*g4*t^8.612)/(g1*g2) + (2*g3*g4^2*t^8.612)/g1^2 + (2*g3*g4^2*t^8.612)/g2^2 + (2*g3*g4^2*t^8.612)/(g1*g2) + (g4^3*t^8.612)/g1^2 + (g4^3*t^8.612)/g2^2 + (g4^3*t^8.612)/(g1*g2) + g1^5*g2^3*t^8.671 - 3*g1^4*g2^4*t^8.671 + g1^3*g2^5*t^8.671 + (g1^5*g2^3*g3*t^8.671)/g4 + (g1^3*g2^5*g3*t^8.671)/g4 + (g1^5*g2^3*g4*t^8.671)/g3 + (g1^3*g2^5*g4*t^8.671)/g3 + (g3^2*g4^2*t^8.695)/(g1^10*g2^10) + (g3^4*g4^4*t^8.718)/(g1^24*g2^24) + (g1^10*g2^8*t^8.731)/(g3*g4^2) - (g1^9*g2^9*t^8.731)/(g3*g4^2) + (g1^8*g2^10*t^8.731)/(g3*g4^2) + (g1^10*g2^8*t^8.731)/(g3^2*g4) - (g1^9*g2^9*t^8.731)/(g3^2*g4) + (g1^8*g2^10*t^8.731)/(g3^2*g4) - (g3*t^8.754)/(g1^4*g2^6) - (g3*t^8.754)/(g1^6*g2^4) - (g4*t^8.754)/(g1^4*g2^6) - (g4*t^8.754)/(g1^6*g2^4) + (g1^15*g2^13*t^8.79)/(g3^3*g4^3) + (g1^13*g2^15*t^8.79)/(g3^3*g4^3) + t^8.813/g3^2 + t^8.813/g4^2 + t^8.813/(g3*g4) - t^4.664/(g1^2*g2^2*y) - (g3*g4*t^6.844)/(g1^8*g2^8*y) + (g3*g4*t^7.851)/(g1^2*g2^2*y) + (g3^2*g4^2*t^8.366)/(g1^6*g2^6*y) + (g3*t^8.425)/(g1*g2*y) + (g4*t^8.425)/(g1*g2*y) + (g1^4*g2^4*t^8.485)/(g3*g4*y) + (g1^4*g2^4*g3*g4*t^8.858)/y + (g1^9*g2^9*t^8.917)/(g3*y) + (g1^9*g2^9*t^8.917)/(g4*y) + (g3^2*g4*t^8.941)/(g1^4*g2^6*y) + (g3^2*g4*t^8.941)/(g1^5*g2^5*y) + (g3^2*g4*t^8.941)/(g1^6*g2^4*y) + (g3*g4^2*t^8.941)/(g1^4*g2^6*y) + (g3*g4^2*t^8.941)/(g1^5*g2^5*y) + (g3*g4^2*t^8.941)/(g1^6*g2^4*y) - (t^4.664*y)/(g1^2*g2^2) - (g3*g4*t^6.844*y)/(g1^8*g2^8) + (g3*g4*t^7.851*y)/(g1^2*g2^2) + (g3^2*g4^2*t^8.366*y)/(g1^6*g2^6) + (g3*t^8.425*y)/(g1*g2) + (g4*t^8.425*y)/(g1*g2) + (g1^4*g2^4*t^8.485*y)/(g3*g4) + g1^4*g2^4*g3*g4*t^8.858*y + (g1^9*g2^9*t^8.917*y)/g3 + (g1^9*g2^9*t^8.917*y)/g4 + (g3^2*g4*t^8.941*y)/(g1^4*g2^6) + (g3^2*g4*t^8.941*y)/(g1^5*g2^5) + (g3^2*g4*t^8.941*y)/(g1^6*g2^4) + (g3*g4^2*t^8.941*y)/(g1^4*g2^6) + (g3*g4^2*t^8.941*y)/(g1^5*g2^5) + (g3*g4^2*t^8.941*y)/(g1^6*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55686 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ | 0.8857 | 1.0964 | 0.8078 | [M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] | t^2.067 + t^2.52 + 6*t^3.553 + 4*t^3.58 + 4*t^3.906 + t^4.134 + t^4.586 + t^5.039 + 10*t^5.293 + 4*t^5.32 + t^5.347 + 6*t^5.62 + 4*t^5.647 - 17*t^6. - t^4.74/y - t^4.74*y | detail |