Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55705 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ 0.8562 1.0535 0.8127 [X:[], M:[0.8904, 0.7265], q:[0.7226, 0.5509, 0.7226], qb:[0.7226, 0.5311, 0.5311], phi:[0.5548]] [X:[], M:[[4, 4, 0, 0], [-6, -6, 1, 1]], q:[[1, 1, 0, 0], [5, 5, -1, -1], [2, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[-2, -2, 0, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}q_{3}$, ${ }q_{1}q_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}q_{2}\tilde{q}_{3}$, ${ }M_{2}q_{3}\tilde{q}_{2}$ ${}M_{2}q_{2}q_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ -6 t^2.18 + t^2.67 + t^3.19 + 2*t^3.25 + 6*t^3.76 + 2*t^3.82 + 3*t^4.34 + t^4.36 + 4*t^4.85 + 2*t^4.91 + t^4.97 + t^5.34 + t^5.37 + 2*t^5.43 + t^5.86 + 2*t^5.92 + 4*t^5.94 - 6*t^6. - 2*t^6.06 + t^6.37 + 8*t^6.43 + 5*t^6.49 + t^6.54 - 6*t^6.57 + 6*t^6.95 + 14*t^7.01 + 4*t^7.03 + 4*t^7.07 - 4*t^7.09 - 2*t^7.15 + 22*t^7.52 + t^7.55 + 12*t^7.58 + 3*t^7.64 - 7*t^7.66 - 2*t^7.72 + t^8.01 + 4*t^8.04 + 18*t^8.1 + 4*t^8.12 + 6*t^8.16 - 6*t^8.18 + 2*t^8.22 - 2*t^8.24 + t^8.53 + t^8.55 + 2*t^8.59 + 18*t^8.61 + 3*t^8.67 + t^8.69 + t^8.72 + 2*t^8.73 - 4*t^8.75 + 2*t^8.79 + 3*t^8.81 - t^4.66/y - t^6.84/y + t^7.85/y + t^8.37/y + (2*t^8.43)/y + t^8.48/y + t^8.86/y + (2*t^8.92)/y + (6*t^8.94)/y - t^4.66*y - t^6.84*y + t^7.85*y + t^8.37*y + 2*t^8.43*y + t^8.48*y + t^8.86*y + 2*t^8.92*y + 6*t^8.94*y (g3*g4*t^2.18)/(g1^6*g2^6) + g1^4*g2^4*t^2.67 + g3*g4*t^3.19 + (g1^5*g2^5*t^3.25)/g3 + (g1^5*g2^5*t^3.25)/g4 + g1^2*g3*t^3.76 + g1*g2*g3*t^3.76 + g2^2*g3*t^3.76 + g1^2*g4*t^3.76 + g1*g2*g4*t^3.76 + g2^2*g4*t^3.76 + (g1^7*g2^5*t^3.82)/(g3*g4) + (g1^5*g2^7*t^3.82)/(g3*g4) + g1^3*g2*t^4.34 + g1^2*g2^2*t^4.34 + g1*g2^3*t^4.34 + (g3^2*g4^2*t^4.36)/(g1^12*g2^12) + (g3^2*t^4.85)/(g1^2*g2^2) + (2*g3*g4*t^4.85)/(g1^2*g2^2) + (g4^2*t^4.85)/(g1^2*g2^2) + (g1^3*g2^3*t^4.91)/g3 + (g1^3*g2^3*t^4.91)/g4 + (g1^8*g2^8*t^4.97)/(g3^2*g4^2) + g1^8*g2^8*t^5.34 + (g3^2*g4^2*t^5.37)/(g1^6*g2^6) + (g3*t^5.43)/(g1*g2) + (g4*t^5.43)/(g1*g2) + g1^4*g2^4*g3*g4*t^5.86 + (g1^9*g2^9*t^5.92)/g3 + (g1^9*g2^9*t^5.92)/g4 + (g3^2*g4*t^5.94)/(g1^4*g2^6) + (g3^2*g4*t^5.94)/(g1^6*g2^4) + (g3*g4^2*t^5.94)/(g1^4*g2^6) + (g3*g4^2*t^5.94)/(g1^6*g2^4) - 4*t^6. - (g3*t^6.)/g4 - (g4*t^6.)/g3 - (g1^5*g2^5*t^6.06)/(g3*g4^2) - (g1^5*g2^5*t^6.06)/(g3^2*g4) + g3^2*g4^2*t^6.37 + g1^6*g2^4*g3*t^6.43 + 2*g1^5*g2^5*g3*t^6.43 + g1^4*g2^6*g3*t^6.43 + g1^6*g2^4*g4*t^6.43 + 2*g1^5*g2^5*g4*t^6.43 + g1^4*g2^6*g4*t^6.43 + (g1^10*g2^10*t^6.49)/g3^2 + (g1^10*g2^10*t^6.49)/g4^2 + (g1^11*g2^9*t^6.49)/(g3*g4) + (g1^10*g2^10*t^6.49)/(g3*g4) + (g1^9*g2^11*t^6.49)/(g3*g4) + (g3^3*g4^3*t^6.54)/(g1^18*g2^18) - (g1^2*t^6.57)/g3 - (g1*g2*t^6.57)/g3 - (g2^2*t^6.57)/g3 - (g1^2*t^6.57)/g4 - (g1*g2*t^6.57)/g4 - (g2^2*t^6.57)/g4 + g1^2*g3^2*g4*t^6.95 + g1*g2*g3^2*g4*t^6.95 + g2^2*g3^2*g4*t^6.95 + g1^2*g3*g4^2*t^6.95 + g1*g2*g3*g4^2*t^6.95 + g2^2*g3*g4^2*t^6.95 + 3*g1^7*g2^5*t^7.01 + 2*g1^6*g2^6*t^7.01 + 3*g1^5*g2^7*t^7.01 + (g1^7*g2^5*g3*t^7.01)/g4 + (g1^6*g2^6*g3*t^7.01)/g4 + (g1^5*g2^7*g3*t^7.01)/g4 + (g1^7*g2^5*g4*t^7.01)/g3 + (g1^6*g2^6*g4*t^7.01)/g3 + (g1^5*g2^7*g4*t^7.01)/g3 + (g3^3*g4*t^7.03)/(g1^8*g2^8) + (2*g3^2*g4^2*t^7.03)/(g1^8*g2^8) + (g3*g4^3*t^7.03)/(g1^8*g2^8) + (g1^12*g2^10*t^7.07)/(g3*g4^2) + (g1^10*g2^12*t^7.07)/(g3*g4^2) + (g1^12*g2^10*t^7.07)/(g3^2*g4) + (g1^10*g2^12*t^7.07)/(g3^2*g4) - (g3*t^7.09)/(g1^2*g2^4) - (g3*t^7.09)/(g1^4*g2^2) - (g4*t^7.09)/(g1^2*g2^4) - (g4*t^7.09)/(g1^4*g2^2) - (g1^3*g2*t^7.15)/(g3*g4) - (g1*g2^3*t^7.15)/(g3*g4) + g1^4*g3^2*t^7.52 + g1^3*g2*g3^2*t^7.52 + 2*g1^2*g2^2*g3^2*t^7.52 + g1*g2^3*g3^2*t^7.52 + g2^4*g3^2*t^7.52 + g1^4*g3*g4*t^7.52 + 2*g1^3*g2*g3*g4*t^7.52 + 4*g1^2*g2^2*g3*g4*t^7.52 + 2*g1*g2^3*g3*g4*t^7.52 + g2^4*g3*g4*t^7.52 + g1^4*g4^2*t^7.52 + g1^3*g2*g4^2*t^7.52 + 2*g1^2*g2^2*g4^2*t^7.52 + g1*g2^3*g4^2*t^7.52 + g2^4*g4^2*t^7.52 + (g3^3*g4^3*t^7.55)/(g1^12*g2^12) + (g1^9*g2^5*t^7.58)/g3 + (g1^8*g2^6*t^7.58)/g3 + (2*g1^7*g2^7*t^7.58)/g3 + (g1^6*g2^8*t^7.58)/g3 + (g1^5*g2^9*t^7.58)/g3 + (g1^9*g2^5*t^7.58)/g4 + (g1^8*g2^6*t^7.58)/g4 + (2*g1^7*g2^7*t^7.58)/g4 + (g1^6*g2^8*t^7.58)/g4 + (g1^5*g2^9*t^7.58)/g4 + (g1^14*g2^10*t^7.64)/(g3^2*g4^2) + (g1^12*g2^12*t^7.64)/(g3^2*g4^2) + (g1^10*g2^14*t^7.64)/(g3^2*g4^2) - t^7.66/(g1*g2^3) - (3*t^7.66)/(g1^2*g2^2) - t^7.66/(g1^3*g2) - (g3*t^7.66)/(g1^2*g2^2*g4) - (g4*t^7.66)/(g1^2*g2^2*g3) - (g1^3*g2^3*t^7.72)/(g3*g4^2) - (g1^3*g2^3*t^7.72)/(g3^2*g4) + g1^12*g2^12*t^8.01 + (g3^3*g4*t^8.04)/(g1^2*g2^2) + (2*g3^2*g4^2*t^8.04)/(g1^2*g2^2) + (g3*g4^3*t^8.04)/(g1^2*g2^2) + g1^5*g2*g3*t^8.1 + g1^4*g2^2*g3*t^8.1 + 4*g1^3*g2^3*g3*t^8.1 + g1^2*g2^4*g3*t^8.1 + g1*g2^5*g3*t^8.1 + (g1^3*g2^3*g3^2*t^8.1)/g4 + g1^5*g2*g4*t^8.1 + g1^4*g2^2*g4*t^8.1 + 4*g1^3*g2^3*g4*t^8.1 + g1^2*g2^4*g4*t^8.1 + g1*g2^5*g4*t^8.1 + (g1^3*g2^3*g4^2*t^8.1)/g3 + (g3^3*g4^2*t^8.12)/(g1^10*g2^12) + (g3^3*g4^2*t^8.12)/(g1^12*g2^10) + (g3^2*g4^3*t^8.12)/(g1^10*g2^12) + (g3^2*g4^3*t^8.12)/(g1^12*g2^10) + (g1^8*g2^8*t^8.16)/g3^2 + (g1^8*g2^8*t^8.16)/g4^2 + (g1^10*g2^6*t^8.16)/(g3*g4) + (2*g1^8*g2^8*t^8.16)/(g3*g4) + (g1^6*g2^10*t^8.16)/(g3*g4) - (g3^2*t^8.18)/(g1^6*g2^6) - (4*g3*g4*t^8.18)/(g1^6*g2^6) - (g4^2*t^8.18)/(g1^6*g2^6) + (g1^13*g2^13*t^8.22)/(g3^2*g4^3) + (g1^13*g2^13*t^8.22)/(g3^3*g4^2) - t^8.24/(g1*g2*g3) - t^8.24/(g1*g2*g4) + g1^8*g2^8*g3*g4*t^8.53 + (g3^3*g4^3*t^8.55)/(g1^6*g2^6) + (g1^13*g2^13*t^8.59)/g3 + (g1^13*g2^13*t^8.59)/g4 + (g3^3*t^8.61)/g1^2 + (g3^3*t^8.61)/g2^2 + (g3^3*t^8.61)/(g1*g2) + (2*g3^2*g4*t^8.61)/g1^2 + (2*g3^2*g4*t^8.61)/g2^2 + (2*g3^2*g4*t^8.61)/(g1*g2) + (2*g3*g4^2*t^8.61)/g1^2 + (2*g3*g4^2*t^8.61)/g2^2 + (2*g3*g4^2*t^8.61)/(g1*g2) + (g4^3*t^8.61)/g1^2 + (g4^3*t^8.61)/g2^2 + (g4^3*t^8.61)/(g1*g2) + g1^5*g2^3*t^8.67 - 3*g1^4*g2^4*t^8.67 + g1^3*g2^5*t^8.67 + (g1^5*g2^3*g3*t^8.67)/g4 + (g1^3*g2^5*g3*t^8.67)/g4 + (g1^5*g2^3*g4*t^8.67)/g3 + (g1^3*g2^5*g4*t^8.67)/g3 + (g3^2*g4^2*t^8.69)/(g1^10*g2^10) + (g3^4*g4^4*t^8.72)/(g1^24*g2^24) + (g1^10*g2^8*t^8.73)/(g3*g4^2) - (g1^9*g2^9*t^8.73)/(g3*g4^2) + (g1^8*g2^10*t^8.73)/(g3*g4^2) + (g1^10*g2^8*t^8.73)/(g3^2*g4) - (g1^9*g2^9*t^8.73)/(g3^2*g4) + (g1^8*g2^10*t^8.73)/(g3^2*g4) - (g3*t^8.75)/(g1^4*g2^6) - (g3*t^8.75)/(g1^6*g2^4) - (g4*t^8.75)/(g1^4*g2^6) - (g4*t^8.75)/(g1^6*g2^4) + (g1^15*g2^13*t^8.79)/(g3^3*g4^3) + (g1^13*g2^15*t^8.79)/(g3^3*g4^3) + t^8.81/g3^2 + t^8.81/g4^2 + t^8.81/(g3*g4) - t^4.66/(g1^2*g2^2*y) - (g3*g4*t^6.84)/(g1^8*g2^8*y) + (g3*g4*t^7.85)/(g1^2*g2^2*y) + (g3^2*g4^2*t^8.37)/(g1^6*g2^6*y) + (g3*t^8.43)/(g1*g2*y) + (g4*t^8.43)/(g1*g2*y) + (g1^4*g2^4*t^8.48)/(g3*g4*y) + (g1^4*g2^4*g3*g4*t^8.86)/y + (g1^9*g2^9*t^8.92)/(g3*y) + (g1^9*g2^9*t^8.92)/(g4*y) + (g3^2*g4*t^8.94)/(g1^4*g2^6*y) + (g3^2*g4*t^8.94)/(g1^5*g2^5*y) + (g3^2*g4*t^8.94)/(g1^6*g2^4*y) + (g3*g4^2*t^8.94)/(g1^4*g2^6*y) + (g3*g4^2*t^8.94)/(g1^5*g2^5*y) + (g3*g4^2*t^8.94)/(g1^6*g2^4*y) - (t^4.66*y)/(g1^2*g2^2) - (g3*g4*t^6.84*y)/(g1^8*g2^8) + (g3*g4*t^7.85*y)/(g1^2*g2^2) + (g3^2*g4^2*t^8.37*y)/(g1^6*g2^6) + (g3*t^8.43*y)/(g1*g2) + (g4*t^8.43*y)/(g1*g2) + (g1^4*g2^4*t^8.48*y)/(g3*g4) + g1^4*g2^4*g3*g4*t^8.86*y + (g1^9*g2^9*t^8.92*y)/g3 + (g1^9*g2^9*t^8.92*y)/g4 + (g3^2*g4*t^8.94*y)/(g1^4*g2^6) + (g3^2*g4*t^8.94*y)/(g1^5*g2^5) + (g3^2*g4*t^8.94*y)/(g1^6*g2^4) + (g3*g4^2*t^8.94*y)/(g1^4*g2^6) + (g3*g4^2*t^8.94*y)/(g1^5*g2^5) + (g3*g4^2*t^8.94*y)/(g1^6*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55686 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ 0.8857 1.0964 0.8078 [X:[], M:[0.8399, 0.689], q:[0.71, 0.6011, 0.5922], qb:[0.5922, 0.5922, 0.5922], phi:[0.5801]] t^2.07 + t^2.52 + 6*t^3.55 + 4*t^3.58 + 4*t^3.91 + t^4.13 + t^4.59 + t^5.04 + 10*t^5.29 + 4*t^5.32 + t^5.35 + 6*t^5.62 + 4*t^5.65 - 17*t^6. - t^4.74/y - t^4.74*y detail