Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55707 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ \phi_1q_2\tilde{q}_2$ | 0.881 | 1.0821 | 0.8141 | [X:[], M:[0.6838, 0.7686], q:[0.5832, 0.733, 0.6157], qb:[0.6157, 0.733, 0.5832], phi:[0.534]] | [X:[], M:[[0, 0, -2, -2], [-4, -4, 0, 0]], q:[[-1, -1, 3, 1], [1, 1, -1, 1], [4, 0, 0, 0]], qb:[[0, 4, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ q_1q_3$, $ q_1\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ q_2\tilde{q}_2$, $ M_2^2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_3$, $ M_1\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_2\phi_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2q_3$, $ M_2q_1\tilde{q}_3$ | $\phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$ | -6 | t^2.05 + t^2.31 + t^3.2 + t^3.5 + 4*t^3.6 + 3*t^3.95 + 4*t^4.05 + t^4.1 + t^4.36 + t^4.4 + t^4.61 + 3*t^5.1 + 4*t^5.2 + t^5.26 + 3*t^5.3 + t^5.51 + t^5.55 + 4*t^5.65 + t^5.81 - 6*t^6. + t^6.15 + 3*t^6.25 + 2*t^6.41 - 3*t^6.45 + t^6.66 + 2*t^6.7 + 4*t^6.8 + t^6.92 + t^7. + 4*t^7.1 + 2*t^7.15 + 9*t^7.19 + 4*t^7.25 + t^7.31 + 3*t^7.35 + 3*t^7.41 + 3*t^7.45 + 12*t^7.55 + t^7.56 - 3*t^7.6 + 12*t^7.64 + t^7.82 + t^7.86 + 3*t^7.9 + 8*t^7.99 - 6*t^8.05 + 6*t^8.09 + t^8.11 + t^8.21 - t^8.35 + 4*t^8.4 + 2*t^8.46 + 3*t^8.5 + 3*t^8.56 + 3*t^8.6 + 12*t^8.7 + 2*t^8.71 - 2*t^8.75 + 10*t^8.8 + 4*t^8.85 + 8*t^8.89 + t^8.97 - t^4.6/y - t^6.65/y - t^6.91/y + t^7.36/y + t^7.4/y - t^7.81/y + t^8.26/y + t^8.3/y + t^8.51/y + (2*t^8.55)/y + (4*t^8.65)/y - t^8.7/y + t^8.81/y + (4*t^8.9)/y - t^8.96/y - t^4.6*y - t^6.65*y - t^6.91*y + t^7.36*y + t^7.4*y - t^7.81*y + t^8.26*y + t^8.3*y + t^8.51*y + 2*t^8.55*y + 4*t^8.65*y - t^8.7*y + t^8.81*y + 4*t^8.9*y - t^8.96*y | t^2.05/(g3^2*g4^2) + t^2.31/(g1^4*g2^4) + t^3.2/(g1^2*g2^2*g3^2*g4^2) + (g3^3*g4^3*t^3.5)/(g1*g2) + (g1^3*g3^3*g4*t^3.6)/g2 + (g2^3*g3^3*g4*t^3.6)/g1 + g1^4*g4^2*t^3.6 + g2^4*g4^2*t^3.6 + (g3^5*g4*t^3.95)/(g1*g2) + g3^2*g4^2*t^3.95 + (g1*g2*g4^3*t^3.95)/g3 + g1^4*g3^2*t^4.05 + g2^4*g3^2*t^4.05 + (g1^5*g2*g4*t^4.05)/g3 + (g1*g2^5*g4*t^4.05)/g3 + t^4.1/(g3^4*g4^4) + t^4.36/(g1^4*g2^4*g3^2*g4^2) + g1*g2*g3*g4*t^4.4 + t^4.61/(g1^8*g2^8) + (g3^5*g4*t^5.1)/(g1^3*g2^3) + (g3^2*g4^2*t^5.1)/(g1^2*g2^2) + (g4^3*t^5.1)/(g1*g2*g3) + (g1^2*g3^2*t^5.2)/g2^2 + (g2^2*g3^2*t^5.2)/g1^2 + (g1^3*g4*t^5.2)/(g2*g3) + (g2^3*g4*t^5.2)/(g1*g3) + t^5.26/(g1^2*g2^2*g3^4*g4^4) + (g1^7*t^5.3)/(g2*g3*g4) + (g1^3*g2^3*t^5.3)/(g3*g4) + (g2^7*t^5.3)/(g1*g3*g4) + t^5.51/(g1^6*g2^6*g3^2*g4^2) + (g3*g4*t^5.55)/(g1*g2) + (g1^4*t^5.65)/g3^2 + (g2^4*t^5.65)/g3^2 + (g1^3*g3*t^5.65)/(g2*g4) + (g2^3*g3*t^5.65)/(g1*g4) + (g3^3*g4^3*t^5.81)/(g1^5*g2^5) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 + t^6.15/(g3^6*g4^6) + (g3^5*g4*t^6.25)/(g1^5*g2^5) + (g3^2*g4^2*t^6.25)/(g1^4*g2^4) + (g4^3*t^6.25)/(g1^3*g2^3*g3) + (2*t^6.41)/(g1^4*g2^4*g3^4*g4^4) - (g1^2*g2^2*t^6.45)/g3^4 - (g3^2*t^6.45)/g4^2 - (g1*g2*t^6.45)/(g3*g4) + t^6.66/(g1^8*g2^8*g3^2*g4^2) + (2*g3*g4*t^6.7)/(g1^3*g2^3) + (g1^2*t^6.8)/(g2^2*g3^2) + (g2^2*t^6.8)/(g1^2*g3^2) + (g1*g3*t^6.8)/(g2^3*g4) + (g2*g3*t^6.8)/(g1^3*g4) + t^6.92/(g1^12*g2^12) + (g3^6*g4^6*t^7.)/(g1^2*g2^2) + (g1^2*g3^6*g4^4*t^7.1)/g2^2 + (g2^2*g3^6*g4^4*t^7.1)/g1^2 + (g1^3*g3^3*g4^5*t^7.1)/g2 + (g2^3*g3^3*g4^5*t^7.1)/g1 + (g3^3*t^7.15)/(g1^3*g2^3*g4) + (g4*t^7.15)/(g1*g2*g3^3) + (g1^6*g3^6*g4^2*t^7.19)/g2^2 + g1^2*g2^2*g3^6*g4^2*t^7.19 + (g2^6*g3^6*g4^2*t^7.19)/g1^2 + (g1^7*g3^3*g4^3*t^7.19)/g2 + g1^3*g2^3*g3^3*g4^3*t^7.19 + (g2^7*g3^3*g4^3*t^7.19)/g1 + g1^8*g4^4*t^7.19 + g1^4*g2^4*g4^4*t^7.19 + g2^8*g4^4*t^7.19 + (g1^2*t^7.25)/(g2^2*g4^2) + (g2^2*t^7.25)/(g1^2*g4^2) + (g1^3*t^7.25)/(g2*g3^3*g4) + (g2^3*t^7.25)/(g1*g3^3*g4) + t^7.31/(g1^2*g2^2*g3^6*g4^6) + (g1^7*t^7.35)/(g2*g3^3*g4^3) + (g1^3*g2^3*t^7.35)/(g3^3*g4^3) + (g2^7*t^7.35)/(g1*g3^3*g4^3) + (g3^5*g4*t^7.41)/(g1^7*g2^7) + (g3^2*g4^2*t^7.41)/(g1^6*g2^6) + (g4^3*t^7.41)/(g1^5*g2^5*g3) + (g3^8*g4^4*t^7.45)/(g1^2*g2^2) + (g3^5*g4^5*t^7.45)/(g1*g2) + g3^2*g4^6*t^7.45 + (g1^2*g3^8*g4^2*t^7.55)/g2^2 + (g2^2*g3^8*g4^2*t^7.55)/g1^2 + (2*g1^3*g3^5*g4^3*t^7.55)/g2 + (2*g2^3*g3^5*g4^3*t^7.55)/g1 + 2*g1^4*g3^2*g4^4*t^7.55 + 2*g2^4*g3^2*g4^4*t^7.55 + (g1^5*g2*g4^5*t^7.55)/g3 + (g1*g2^5*g4^5*t^7.55)/g3 + t^7.56/(g1^6*g2^6*g3^4*g4^4) - t^7.6/g3^4 - (g3^2*t^7.6)/(g1^2*g2^2*g4^2) - t^7.6/(g1*g2*g3*g4) + (g1^7*g3^5*g4*t^7.64)/g2 + g1^3*g2^3*g3^5*g4*t^7.64 + (g2^7*g3^5*g4*t^7.64)/g1 + 2*g1^8*g3^2*g4^2*t^7.64 + 2*g1^4*g2^4*g3^2*g4^2*t^7.64 + 2*g2^8*g3^2*g4^2*t^7.64 + (g1^9*g2*g4^3*t^7.64)/g3 + (g1^5*g2^5*g4^3*t^7.64)/g3 + (g1*g2^9*g4^3*t^7.64)/g3 + t^7.82/(g1^10*g2^10*g3^2*g4^2) + (g3*g4*t^7.86)/(g1^5*g2^5) + (g3^10*g4^2*t^7.9)/(g1^2*g2^2) + g3^4*g4^4*t^7.9 + (g1^2*g2^2*g4^6*t^7.9)/g3^2 + (g1^3*g3^7*g4*t^7.99)/g2 + (g2^3*g3^7*g4*t^7.99)/g1 + g1^4*g3^4*g4^2*t^7.99 + g2^4*g3^4*g4^2*t^7.99 + g1^5*g2*g3*g4^3*t^7.99 + g1*g2^5*g3*g4^3*t^7.99 + (g1^6*g2^2*g4^4*t^7.99)/g3^2 + (g1^2*g2^6*g4^4*t^7.99)/g3^2 - (4*t^8.05)/(g3^2*g4^2) - (g1^4*t^8.05)/(g2^4*g3^2*g4^2) - (g2^4*t^8.05)/(g1^4*g3^2*g4^2) + g1^8*g3^4*t^8.09 + g1^4*g2^4*g3^4*t^8.09 + g2^8*g3^4*t^8.09 + (g1^10*g2^2*g4^2*t^8.09)/g3^2 + (g1^6*g2^6*g4^2*t^8.09)/g3^2 + (g1^2*g2^10*g4^2*t^8.09)/g3^2 + (g3^3*g4^3*t^8.11)/(g1^9*g2^9) + t^8.21/(g3^8*g4^8) - (2*t^8.31)/(g1^4*g2^4) + (g3^3*t^8.31)/(g1^5*g2^5*g4) + (g4*t^8.31)/(g1^3*g2^3*g3^3) - g1*g2*g3^3*g4^3*t^8.35 + t^8.4/(g1^4*g4^2) + t^8.4/(g2^4*g4^2) + (g1*t^8.4)/(g2^3*g3^3*g4) + (g2*t^8.4)/(g1^3*g3^3*g4) + (2*t^8.46)/(g1^4*g2^4*g3^6*g4^6) + (g1^5*t^8.5)/(g2^3*g3^3*g4^3) + (g1*g2*t^8.5)/(g3^3*g4^3) + (g2^5*t^8.5)/(g1^3*g3^3*g4^3) + (g3^5*g4*t^8.56)/(g1^9*g2^9) + (g3^2*g4^2*t^8.56)/(g1^8*g2^8) + (g4^3*t^8.56)/(g1^7*g2^7*g3) + (g3^8*g4^4*t^8.6)/(g1^4*g2^4) + (g3^5*g4^5*t^8.6)/(g1^3*g2^3) + (g3^2*g4^6*t^8.6)/(g1^2*g2^2) + (g3^8*g4^2*t^8.7)/g1^4 + (g3^8*g4^2*t^8.7)/g2^4 + (2*g1*g3^5*g4^3*t^8.7)/g2^3 + (2*g2*g3^5*g4^3*t^8.7)/g1^3 + (2*g1^2*g3^2*g4^4*t^8.7)/g2^2 + (2*g2^2*g3^2*g4^4*t^8.7)/g1^2 + (g1^3*g4^5*t^8.7)/(g2*g3) + (g2^3*g4^5*t^8.7)/(g1*g3) + (2*t^8.71)/(g1^8*g2^8*g3^4*g4^4) - t^8.75/(g1^2*g2^2*g3^4) - (g3^2*t^8.75)/(g1^4*g2^4*g4^2) + (g1^5*g3^5*g4*t^8.8)/g2^3 + (g2^5*g3^5*g4*t^8.8)/g1^3 + (2*g1^6*g3^2*g4^2*t^8.8)/g2^2 + 2*g1^2*g2^2*g3^2*g4^2*t^8.8 + (2*g2^6*g3^2*g4^2*t^8.8)/g1^2 + (g1^7*g4^3*t^8.8)/(g2*g3) + (g2^7*g4^3*t^8.8)/(g1*g3) + (g1*t^8.85)/(g2^3*g3*g4^3) + (g2*t^8.85)/(g1^3*g3*g4^3) + (g1^2*t^8.85)/(g2^2*g3^4*g4^2) + (g2^2*t^8.85)/(g1^2*g3^4*g4^2) + (g1^10*g3^2*t^8.89)/g2^2 + g1^6*g2^2*g3^2*t^8.89 + g1^2*g2^6*g3^2*t^8.89 + (g2^10*g3^2*t^8.89)/g1^2 + (g1^11*g4*t^8.89)/(g2*g3) + (g1^7*g2^3*g4*t^8.89)/g3 + (g1^3*g2^7*g4*t^8.89)/g3 + (g2^11*g4*t^8.89)/(g1*g3) + t^8.97/(g1^12*g2^12*g3^2*g4^2) - t^4.6/(g1*g2*g3*g4*y) - t^6.65/(g1*g2*g3^3*g4^3*y) - t^6.91/(g1^5*g2^5*g3*g4*y) + t^7.36/(g1^4*g2^4*g3^2*g4^2*y) + (g1*g2*g3*g4*t^7.4)/y - t^7.81/(g1^3*g2^3*g3^3*g4^3*y) + t^8.26/(g1^2*g2^2*g3^4*g4^4*y) + (g1^3*g2^3*t^8.3)/(g3*g4*y) + t^8.51/(g1^6*g2^6*g3^2*g4^2*y) + (2*g3*g4*t^8.55)/(g1*g2*y) + (g1^4*t^8.65)/(g3^2*y) + (g2^4*t^8.65)/(g3^2*y) + (g1^3*g3*t^8.65)/(g2*g4*y) + (g2^3*g3*t^8.65)/(g1*g4*y) - t^8.7/(g1*g2*g3^5*g4^5*y) + (g3^3*g4^3*t^8.81)/(g1^5*g2^5*y) + (g3^3*g4*t^8.9)/(g1*g2^5*y) + (g3^3*g4*t^8.9)/(g1^5*g2*y) + (g4^2*t^8.9)/(g1^4*y) + (g4^2*t^8.9)/(g2^4*y) - t^8.96/(g1^5*g2^5*g3^3*g4^3*y) - (t^4.6*y)/(g1*g2*g3*g4) - (t^6.65*y)/(g1*g2*g3^3*g4^3) - (t^6.91*y)/(g1^5*g2^5*g3*g4) + (t^7.36*y)/(g1^4*g2^4*g3^2*g4^2) + g1*g2*g3*g4*t^7.4*y - (t^7.81*y)/(g1^3*g2^3*g3^3*g4^3) + (t^8.26*y)/(g1^2*g2^2*g3^4*g4^4) + (g1^3*g2^3*t^8.3*y)/(g3*g4) + (t^8.51*y)/(g1^6*g2^6*g3^2*g4^2) + (2*g3*g4*t^8.55*y)/(g1*g2) + (g1^4*t^8.65*y)/g3^2 + (g2^4*t^8.65*y)/g3^2 + (g1^3*g3*t^8.65*y)/(g2*g4) + (g2^3*g3*t^8.65*y)/(g1*g4) - (t^8.7*y)/(g1*g2*g3^5*g4^5) + (g3^3*g4^3*t^8.81*y)/(g1^5*g2^5) + (g3^3*g4*t^8.9*y)/(g1*g2^5) + (g3^3*g4*t^8.9*y)/(g1^5*g2) + (g4^2*t^8.9*y)/g1^4 + (g4^2*t^8.9*y)/g2^4 - (t^8.96*y)/(g1^5*g2^5*g3^3*g4^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55683 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.8977 | 1.103 | 0.8139 | [X:[], M:[0.7364, 0.72], q:[0.6318, 0.6318, 0.64], qb:[0.64, 0.6318, 0.6318], phi:[0.5482]] | t^2.16 + t^2.21 + t^3.29 + 5*t^3.79 + 8*t^3.82 + t^4.32 + t^4.37 + t^4.42 + 10*t^5.44 + t^5.45 + 8*t^5.46 + 3*t^5.48 + t^5.5 + 5*t^5.95 - 15*t^6. - t^4.64/y - t^4.64*y | detail |