Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55819 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ M_1\phi_1^2$ 0.8901 1.1031 0.8069 [X:[], M:[0.8151, 0.7398], q:[0.5925, 0.5925, 0.6301], qb:[0.6301, 0.5925, 0.5925], phi:[0.5925]] [X:[], M:[[0, 0, -2, -2], [0, 0, 8, 8]], q:[[-1, 0, 2, 2], [1, 0, 0, 0], [0, -1, -8, -8]], qb:[[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[0, 0, 1, 1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_2\phi_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_2$ . -14 t^2.22 + t^2.45 + 6*t^3.55 + 8*t^3.67 + t^4.44 + t^4.66 + t^4.89 + 10*t^5.33 + 8*t^5.45 + 3*t^5.56 + 6*t^5.77 - 14*t^6. + t^6.66 + t^6.88 + 21*t^7.11 + 40*t^7.22 + 31*t^7.34 + 10*t^7.55 - 16*t^7.78 - 8*t^7.89 + 6*t^7.99 - 11*t^8.22 - 4*t^8.45 + t^8.88 + 45*t^8.89 - t^4.78/y - t^7./y + t^7.66/y + t^8.56/y + (6*t^8.77)/y + (8*t^8.89)/y - t^4.78*y - t^7.*y + t^7.66*y + t^8.56*y + 6*t^8.77*y + 8*t^8.89*y g3^8*g4^8*t^2.22 + t^2.45/(g3^2*g4^2) + g1*g3^2*t^3.55 + g1*g4^2*t^3.55 + 2*g3^2*g4^2*t^3.55 + (g3^4*g4^2*t^3.55)/g1 + (g3^2*g4^4*t^3.55)/g1 + g1*g2*t^3.67 + g2*g3^2*t^3.67 + (g1*t^3.67)/(g2*g3^8*g4^8) + t^3.67/(g2*g3^6*g4^8) + t^3.67/(g2*g3^8*g4^6) + t^3.67/(g1*g2*g3^6*g4^6) + g2*g4^2*t^3.67 + (g2*g3^2*g4^2*t^3.67)/g1 + g3^16*g4^16*t^4.44 + g3^6*g4^6*t^4.66 + t^4.89/(g3^4*g4^4) + g1^2*g3*g4*t^5.33 + g1*g3^3*g4*t^5.33 + g3^5*g4*t^5.33 + g1*g3*g4^3*t^5.33 + 2*g3^3*g4^3*t^5.33 + (g3^5*g4^3*t^5.33)/g1 + g3*g4^5*t^5.33 + (g3^3*g4^5*t^5.33)/g1 + (g3^5*g4^5*t^5.33)/g1^2 + (g1*t^5.45)/(g2*g3^7*g4^7) + t^5.45/(g2*g3^5*g4^7) + t^5.45/(g2*g3^7*g4^5) + t^5.45/(g1*g2*g3^5*g4^5) + g1*g2*g3*g4*t^5.45 + g2*g3^3*g4*t^5.45 + g2*g3*g4^3*t^5.45 + (g2*g3^3*g4^3*t^5.45)/g1 + t^5.56/(g2^2*g3^15*g4^15) + t^5.56/(g3^7*g4^7) + g2^2*g3*g4*t^5.56 + g1*g3^10*g4^8*t^5.77 + g1*g3^8*g4^10*t^5.77 + 2*g3^10*g4^10*t^5.77 + (g3^12*g4^10*t^5.77)/g1 + (g3^10*g4^12*t^5.77)/g1 - 4*t^6. - (g1*t^6.)/g3^2 - (g3^2*t^6.)/g1 - t^6./(g2^2*g3^8*g4^8) - (g1*t^6.)/g4^2 - (g1^2*t^6.)/(g3^2*g4^2) - (g3^2*t^6.)/g4^2 - (g4^2*t^6.)/g1 - (g4^2*t^6.)/g3^2 - (g3^2*g4^2*t^6.)/g1^2 - g2^2*g3^8*g4^8*t^6. + g3^24*g4^24*t^6.66 + g3^14*g4^14*t^6.88 + g1^2*g3^4*t^7.11 + g1^2*g3^2*g4^2*t^7.11 + 2*g1*g3^4*g4^2*t^7.11 + g3^6*g4^2*t^7.11 + g1^2*g4^4*t^7.11 + 2*g1*g3^2*g4^4*t^7.11 + 5*g3^4*g4^4*t^7.11 + (2*g3^6*g4^4*t^7.11)/g1 + (g3^8*g4^4*t^7.11)/g1^2 + g3^2*g4^6*t^7.11 + (2*g3^4*g4^6*t^7.11)/g1 + (g3^6*g4^6*t^7.11)/g1^2 + (g3^4*g4^8*t^7.11)/g1^2 + g1^2*g2*g3^2*t^7.22 + g1*g2*g3^4*t^7.22 + (g1^2*t^7.22)/(g2*g3^6*g4^8) + (g1*t^7.22)/(g2*g3^4*g4^8) + (g1^2*t^7.22)/(g2*g3^8*g4^6) + (3*g1*t^7.22)/(g2*g3^6*g4^6) + (3*t^7.22)/(g2*g3^4*g4^6) + t^7.22/(g1*g2*g3^2*g4^6) + (g1*t^7.22)/(g2*g3^8*g4^4) + (3*t^7.22)/(g2*g3^6*g4^4) + (3*t^7.22)/(g1*g2*g3^4*g4^4) + t^7.22/(g1^2*g2*g3^2*g4^4) + t^7.22/(g1*g2*g3^6*g4^2) + t^7.22/(g1^2*g2*g3^4*g4^2) + g1^2*g2*g4^2*t^7.22 + 3*g1*g2*g3^2*g4^2*t^7.22 + 3*g2*g3^4*g4^2*t^7.22 + (g2*g3^6*g4^2*t^7.22)/g1 + g1*g2*g4^4*t^7.22 + 3*g2*g3^2*g4^4*t^7.22 + (3*g2*g3^4*g4^4*t^7.22)/g1 + (g2*g3^6*g4^4*t^7.22)/g1^2 + (g2*g3^2*g4^6*t^7.22)/g1 + (g2*g3^4*g4^6*t^7.22)/g1^2 + g1^2*g2^2*t^7.34 + g1*g2^2*g3^2*t^7.34 + g2^2*g3^4*t^7.34 + (g1^2*t^7.34)/(g2^2*g3^16*g4^16) + (g1*t^7.34)/(g2^2*g3^14*g4^16) + t^7.34/(g2^2*g3^12*g4^16) + (g1*t^7.34)/(g2^2*g3^16*g4^14) + (2*t^7.34)/(g2^2*g3^14*g4^14) + t^7.34/(g1*g2^2*g3^12*g4^14) + t^7.34/(g2^2*g3^16*g4^12) + t^7.34/(g1*g2^2*g3^14*g4^12) + t^7.34/(g1^2*g2^2*g3^12*g4^12) + (g1^2*t^7.34)/(g3^8*g4^8) + (g1*t^7.34)/(g3^6*g4^8) + t^7.34/(g3^4*g4^8) + (g1*t^7.34)/(g3^8*g4^6) + (3*t^7.34)/(g3^6*g4^6) + t^7.34/(g1*g3^4*g4^6) + t^7.34/(g3^8*g4^4) + t^7.34/(g1*g3^6*g4^4) + t^7.34/(g1^2*g3^4*g4^4) + g1*g2^2*g4^2*t^7.34 + 2*g2^2*g3^2*g4^2*t^7.34 + (g2^2*g3^4*g4^2*t^7.34)/g1 + g2^2*g4^4*t^7.34 + (g2^2*g3^2*g4^4*t^7.34)/g1 + (g2^2*g3^4*g4^4*t^7.34)/g1^2 + g1^2*g3^9*g4^9*t^7.55 + g1*g3^11*g4^9*t^7.55 + g3^13*g4^9*t^7.55 + g1*g3^9*g4^11*t^7.55 + 2*g3^11*g4^11*t^7.55 + (g3^13*g4^11*t^7.55)/g1 + g3^9*g4^13*t^7.55 + (g3^11*g4^13*t^7.55)/g1 + (g3^13*g4^13*t^7.55)/g1^2 - (g1^2*t^7.78)/(g3*g4) - (2*g1*g3*t^7.78)/g4 - (g3^3*t^7.78)/g4 - (2*g1*g4*t^7.78)/g3 - 4*g3*g4*t^7.78 - (2*g3^3*g4*t^7.78)/g1 - (g4^3*t^7.78)/g3 - (2*g3*g4^3*t^7.78)/g1 - (g3^3*g4^3*t^7.78)/g1^2 - (g1*t^7.89)/(g2*g3^9*g4^9) - t^7.89/(g2*g3^7*g4^9) - t^7.89/(g2*g3^9*g4^7) - t^7.89/(g1*g2*g3^7*g4^7) - (g1*g2*t^7.89)/(g3*g4) - (g2*g3*t^7.89)/g4 - (g2*g4*t^7.89)/g3 - (g2*g3*g4*t^7.89)/g1 + g1*g3^18*g4^16*t^7.99 + g1*g3^16*g4^18*t^7.99 + 2*g3^18*g4^18*t^7.99 + (g3^20*g4^18*t^7.99)/g1 + (g3^18*g4^20*t^7.99)/g1 - g1^2*g3^6*g4^6*t^8.22 - g1*g3^8*g4^6*t^8.22 - g3^10*g4^6*t^8.22 - g1*g3^6*g4^8*t^8.22 - 3*g3^8*g4^8*t^8.22 - (g3^10*g4^8*t^8.22)/g1 - g3^6*g4^10*t^8.22 - (g3^8*g4^10*t^8.22)/g1 - (g3^10*g4^10*t^8.22)/g1^2 - t^8.45/(g2^2*g3^10*g4^10) - (2*t^8.45)/(g3^2*g4^2) - g2^2*g3^6*g4^6*t^8.45 + g3^32*g4^32*t^8.88 + g1^3*g3^3*g4*t^8.89 + g1^2*g3^5*g4*t^8.89 + g1*g3^7*g4*t^8.89 + g1^3*g3*g4^3*t^8.89 + 3*g1^2*g3^3*g4^3*t^8.89 + 4*g1*g3^5*g4^3*t^8.89 + 3*g3^7*g4^3*t^8.89 + (g3^9*g4^3*t^8.89)/g1 + g1^2*g3*g4^5*t^8.89 + 4*g1*g3^3*g4^5*t^8.89 + 5*g3^5*g4^5*t^8.89 + (4*g3^7*g4^5*t^8.89)/g1 + (g3^9*g4^5*t^8.89)/g1^2 + g1*g3*g4^7*t^8.89 + 3*g3^3*g4^7*t^8.89 + (4*g3^5*g4^7*t^8.89)/g1 + (3*g3^7*g4^7*t^8.89)/g1^2 + (g3^9*g4^7*t^8.89)/g1^3 + (g3^3*g4^9*t^8.89)/g1 + (g3^5*g4^9*t^8.89)/g1^2 + (g3^7*g4^9*t^8.89)/g1^3 - (g3*g4*t^4.78)/y - (g3^9*g4^9*t^7.)/y + (g3^6*g4^6*t^7.66)/y + t^8.56/(g3^7*g4^7*y) + (g1*g3^10*g4^8*t^8.77)/y + (g1*g3^8*g4^10*t^8.77)/y + (2*g3^10*g4^10*t^8.77)/y + (g3^12*g4^10*t^8.77)/(g1*y) + (g3^10*g4^12*t^8.77)/(g1*y) + (g1*t^8.89)/(g2*y) + (g3^2*t^8.89)/(g2*y) + (g4^2*t^8.89)/(g2*y) + (g3^2*g4^2*t^8.89)/(g1*g2*y) + (g1*g2*g3^8*g4^8*t^8.89)/y + (g2*g3^10*g4^8*t^8.89)/y + (g2*g3^8*g4^10*t^8.89)/y + (g2*g3^10*g4^10*t^8.89)/(g1*y) - g3*g4*t^4.78*y - g3^9*g4^9*t^7.*y + g3^6*g4^6*t^7.66*y + (t^8.56*y)/(g3^7*g4^7) + g1*g3^10*g4^8*t^8.77*y + g1*g3^8*g4^10*t^8.77*y + 2*g3^10*g4^10*t^8.77*y + (g3^12*g4^10*t^8.77*y)/g1 + (g3^10*g4^12*t^8.77*y)/g1 + (g1*t^8.89*y)/g2 + (g3^2*t^8.89*y)/g2 + (g4^2*t^8.89*y)/g2 + (g3^2*g4^2*t^8.89*y)/(g1*g2) + g1*g2*g3^8*g4^8*t^8.89*y + g2*g3^10*g4^8*t^8.89*y + g2*g3^8*g4^10*t^8.89*y + (g2*g3^10*g4^10*t^8.89*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55683 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.8977 1.103 0.8139 [X:[], M:[0.7364, 0.72], q:[0.6318, 0.6318, 0.64], qb:[0.64, 0.6318, 0.6318], phi:[0.5482]] t^2.16 + t^2.21 + t^3.29 + 5*t^3.79 + 8*t^3.82 + t^4.32 + t^4.37 + t^4.42 + 10*t^5.44 + t^5.45 + 8*t^5.46 + 3*t^5.48 + t^5.5 + 5*t^5.95 - 15*t^6. - t^4.64/y - t^4.64*y detail