Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55806 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ M_2\phi_1^2$ 0.8897 1.099 0.8095 [X:[], M:[0.7624, 0.8251], q:[0.6188, 0.6188, 0.5875], qb:[0.5875, 0.6188, 0.6188], phi:[0.5875]] [X:[], M:[[0, 0, -3, -3], [0, 0, 2, 2]], q:[[-1, 0, 3, 3], [1, 0, 0, 0], [0, -1, -2, -2]], qb:[[0, 1, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], phi:[[0, 0, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_2$, $ M_1\phi_1^2$ . -14 t^2.29 + t^2.48 + t^3.52 + 8*t^3.62 + 5*t^3.71 + t^4.57 + t^4.76 + t^4.95 + 3*t^5.29 + 8*t^5.38 + 10*t^5.48 + t^5.81 - 14*t^6. + 5*t^6.19 + t^6.86 + 2*t^7.05 + 8*t^7.14 + 36*t^7.24 + 32*t^7.33 + 15*t^7.43 + 3*t^7.57 - 9*t^7.76 - 8*t^7.86 + t^8.1 - 4*t^8.29 - 11*t^8.48 + 5*t^8.66 + 3*t^8.81 + 24*t^8.91 - t^4.76/y - t^7.05/y + t^7.76/y + t^8.48/y + t^8.81/y + (8*t^8.91)/y - t^4.76*y - t^7.05*y + t^7.76*y + t^8.48*y + t^8.81*y + 8*t^8.91*y t^2.29/(g3^3*g4^3) + g3^2*g4^2*t^2.48 + t^3.52/(g3^2*g4^2) + g1*g2*t^3.62 + g2*g3^3*t^3.62 + (g1*t^3.62)/(g2*g3^2*g4^2) + (g3*t^3.62)/(g2*g4^2) + (g4*t^3.62)/(g2*g3^2) + (g3*g4*t^3.62)/(g1*g2) + g2*g4^3*t^3.62 + (g2*g3^3*g4^3*t^3.62)/g1 + g1*g3^3*t^3.71 + g1*g4^3*t^3.71 + g3^3*g4^3*t^3.71 + (g3^6*g4^3*t^3.71)/g1 + (g3^3*g4^6*t^3.71)/g1 + t^4.57/(g3^6*g4^6) + t^4.76/(g3*g4) + g3^4*g4^4*t^4.95 + t^5.29/(g2^2*g3^5*g4^5) + t^5.29/(g3^3*g4^3) + (g2^2*t^5.29)/(g3*g4) + t^5.38/(g1*g2) + t^5.38/(g2*g3^3) + t^5.38/(g2*g4^3) + (g1*t^5.38)/(g2*g3^3*g4^3) + (g1*g2*t^5.38)/(g3*g4) + (g2*g3^2*t^5.38)/g4 + (g2*g4^2*t^5.38)/g3 + (g2*g3^2*g4^2*t^5.38)/g1 + (g1^2*t^5.48)/(g3*g4) + (g1*g3^2*t^5.48)/g4 + (g3^5*t^5.48)/g4 + (g1*g4^2*t^5.48)/g3 + 2*g3^2*g4^2*t^5.48 + (g3^5*g4^2*t^5.48)/g1 + (g4^5*t^5.48)/g3 + (g3^2*g4^5*t^5.48)/g1 + (g3^5*g4^5*t^5.48)/g1^2 + t^5.81/(g3^5*g4^5) - 4*t^6. - (g1*t^6.)/g3^3 - (g3^3*t^6.)/g1 - (g1*t^6.)/g4^3 - (g1^2*t^6.)/(g3^3*g4^3) - (g3^3*t^6.)/g4^3 - t^6./(g2^2*g3^2*g4^2) - g2^2*g3^2*g4^2*t^6. - (g4^3*t^6.)/g1 - (g4^3*t^6.)/g3^3 - (g3^3*g4^3*t^6.)/g1^2 + g1*g3^5*g4^2*t^6.19 + g1*g3^2*g4^5*t^6.19 + g3^5*g4^5*t^6.19 + (g3^8*g4^5*t^6.19)/g1 + (g3^5*g4^8*t^6.19)/g1 + t^6.86/(g3^9*g4^9) + (2*t^7.05)/(g3^4*g4^4) + (g1*t^7.14)/(g2*g3^4*g4^4) + t^7.14/(g2*g3*g4^4) + (g1*g2*t^7.14)/(g3^2*g4^2) + (g2*g3*t^7.14)/g4^2 + t^7.14/(g2*g3^4*g4) + t^7.14/(g1*g2*g3*g4) + (g2*g4*t^7.14)/g3^2 + (g2*g3*g4*t^7.14)/g1 + g1^2*g2^2*t^7.24 + g1*g2^2*g3^3*t^7.24 + g2^2*g3^6*t^7.24 + (g1^2*t^7.24)/(g2^2*g3^4*g4^4) + (g1*t^7.24)/(g2^2*g3*g4^4) + (g3^2*t^7.24)/(g2^2*g4^4) + (g1^2*t^7.24)/(g3^2*g4^2) + (2*g1*g3*t^7.24)/g4^2 + (g3^4*t^7.24)/g4^2 + (g1*t^7.24)/(g2^2*g3^4*g4) + (2*t^7.24)/(g2^2*g3*g4) + (g3^2*t^7.24)/(g1*g2^2*g4) + (2*g1*g4*t^7.24)/g3^2 + 4*g3*g4*t^7.24 + (2*g3^4*g4*t^7.24)/g1 + (g4^2*t^7.24)/(g2^2*g3^4) + (g4^2*t^7.24)/(g1*g2^2*g3) + (g3^2*g4^2*t^7.24)/(g1^2*g2^2) + g1*g2^2*g4^3*t^7.24 + 2*g2^2*g3^3*g4^3*t^7.24 + (g2^2*g3^6*g4^3*t^7.24)/g1 + (g4^4*t^7.24)/g3^2 + (2*g3*g4^4*t^7.24)/g1 + (g3^4*g4^4*t^7.24)/g1^2 + g2^2*g4^6*t^7.24 + (g2^2*g3^3*g4^6*t^7.24)/g1 + (g2^2*g3^6*g4^6*t^7.24)/g1^2 + g1^2*g2*g3^3*t^7.33 + g1*g2*g3^6*t^7.33 + (g1^2*g3*t^7.33)/(g2*g4^2) + (g1*g3^4*t^7.33)/(g2*g4^2) + (g1^2*g4*t^7.33)/(g2*g3^2) + (2*g1*g3*g4*t^7.33)/g2 + (2*g3^4*g4*t^7.33)/g2 + (g3^7*g4*t^7.33)/(g1*g2) + g1^2*g2*g4^3*t^7.33 + 2*g1*g2*g3^3*g4^3*t^7.33 + 2*g2*g3^6*g4^3*t^7.33 + (g2*g3^9*g4^3*t^7.33)/g1 + (g1*g4^4*t^7.33)/(g2*g3^2) + (2*g3*g4^4*t^7.33)/g2 + (2*g3^4*g4^4*t^7.33)/(g1*g2) + (g3^7*g4^4*t^7.33)/(g1^2*g2) + g1*g2*g4^6*t^7.33 + 2*g2*g3^3*g4^6*t^7.33 + (2*g2*g3^6*g4^6*t^7.33)/g1 + (g2*g3^9*g4^6*t^7.33)/g1^2 + (g3*g4^7*t^7.33)/(g1*g2) + (g3^4*g4^7*t^7.33)/(g1^2*g2) + (g2*g3^3*g4^9*t^7.33)/g1 + (g2*g3^6*g4^9*t^7.33)/g1^2 + g1^2*g3^6*t^7.43 + g1^2*g3^3*g4^3*t^7.43 + g1*g3^6*g4^3*t^7.43 + g3^9*g4^3*t^7.43 + g1^2*g4^6*t^7.43 + g1*g3^3*g4^6*t^7.43 + 3*g3^6*g4^6*t^7.43 + (g3^9*g4^6*t^7.43)/g1 + (g3^12*g4^6*t^7.43)/g1^2 + g3^3*g4^9*t^7.43 + (g3^6*g4^9*t^7.43)/g1 + (g3^9*g4^9*t^7.43)/g1^2 + (g3^6*g4^12*t^7.43)/g1^2 + t^7.57/(g2^2*g3^8*g4^8) + t^7.57/(g3^6*g4^6) + (g2^2*t^7.57)/(g3^4*g4^4) - (g1*t^7.76)/(g3*g4^4) - t^7.76/(g2^2*g3^3*g4^3) - (g1*t^7.76)/(g3^4*g4) - (3*t^7.76)/(g3*g4) - (g3^2*t^7.76)/(g1*g4) - g2^2*g3*g4*t^7.76 - (g4^2*t^7.76)/(g1*g3) - (g1*t^7.86)/(g2*g3*g4) - (g3^2*t^7.86)/(g2*g4) - g1*g2*g3*g4*t^7.86 - g2*g3^4*g4*t^7.86 - (g4^2*t^7.86)/(g2*g3) - (g3^2*g4^2*t^7.86)/(g1*g2) - g2*g3*g4^4*t^7.86 - (g2*g3^4*g4^4*t^7.86)/g1 + t^8.1/(g3^8*g4^8) - t^8.29/(g2^2*g3^5*g4^5) - (2*t^8.29)/(g3^3*g4^3) - (g2^2*t^8.29)/(g3*g4) - (g1^2*t^8.48)/(g3*g4) - (g1*g3^2*t^8.48)/g4 - (g3^5*t^8.48)/g4 - (g1*g4^2*t^8.48)/g3 - 3*g3^2*g4^2*t^8.48 - (g3^5*g4^2*t^8.48)/g1 - (g4^5*t^8.48)/g3 - (g3^2*g4^5*t^8.48)/g1 - (g3^5*g4^5*t^8.48)/g1^2 + g1*g3^7*g4^4*t^8.66 + g1*g3^4*g4^7*t^8.66 + g3^7*g4^7*t^8.66 + (g3^10*g4^7*t^8.66)/g1 + (g3^7*g4^10*t^8.66)/g1 + t^8.81/(g2^2*g3^7*g4^7) + t^8.81/(g3^5*g4^5) + (g2^2*t^8.81)/(g3^3*g4^3) + (2*g2*t^8.91)/g1 + (2*g2*t^8.91)/g3^3 + (g1*t^8.91)/(g2^3*g3^7*g4^7) + t^8.91/(g2^3*g3^4*g4^7) + (2*g1*t^8.91)/(g2*g3^5*g4^5) + (2*t^8.91)/(g2*g3^2*g4^5) + t^8.91/(g2^3*g3^7*g4^4) + t^8.91/(g1*g2^3*g3^4*g4^4) + (2*g2*t^8.91)/g4^3 + (2*g1*g2*t^8.91)/(g3^3*g4^3) + (2*t^8.91)/(g2*g3^5*g4^2) + (2*t^8.91)/(g1*g2*g3^2*g4^2) + (g1*g2^3*t^8.91)/(g3*g4) + (g2^3*g3^2*t^8.91)/g4 + (g2^3*g4^2*t^8.91)/g3 + (g2^3*g3^2*g4^2*t^8.91)/g1 - t^4.76/(g3*g4*y) - t^7.05/(g3^4*g4^4*y) + t^7.76/(g3*g4*y) + (g3^2*g4^2*t^8.48)/y + t^8.81/(g3^5*g4^5*y) + (g2*t^8.91)/(g1*y) + (g2*t^8.91)/(g3^3*y) + (g1*t^8.91)/(g2*g3^5*g4^5*y) + t^8.91/(g2*g3^2*g4^5*y) + (g2*t^8.91)/(g4^3*y) + (g1*g2*t^8.91)/(g3^3*g4^3*y) + t^8.91/(g2*g3^5*g4^2*y) + t^8.91/(g1*g2*g3^2*g4^2*y) - (t^4.76*y)/(g3*g4) - (t^7.05*y)/(g3^4*g4^4) + (t^7.76*y)/(g3*g4) + g3^2*g4^2*t^8.48*y + (t^8.81*y)/(g3^5*g4^5) + (g2*t^8.91*y)/g1 + (g2*t^8.91*y)/g3^3 + (g1*t^8.91*y)/(g2*g3^5*g4^5) + (t^8.91*y)/(g2*g3^2*g4^5) + (g2*t^8.91*y)/g4^3 + (g1*g2*t^8.91*y)/(g3^3*g4^3) + (t^8.91*y)/(g2*g3^5*g4^2) + (t^8.91*y)/(g1*g2*g3^2*g4^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55683 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.8977 1.103 0.8139 [X:[], M:[0.7364, 0.72], q:[0.6318, 0.6318, 0.64], qb:[0.64, 0.6318, 0.6318], phi:[0.5482]] t^2.16 + t^2.21 + t^3.29 + 5*t^3.79 + 8*t^3.82 + t^4.32 + t^4.37 + t^4.42 + 10*t^5.44 + t^5.45 + 8*t^5.46 + 3*t^5.48 + t^5.5 + 5*t^5.95 - 15*t^6. - t^4.64/y - t^4.64*y detail