Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55680 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ | 0.8691 | 1.0645 | 0.8165 | [X:[], M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] | [X:[], M:[[0, 2, 2, 2, 2], [0, -3, -3, 0, 0]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ q_1q_2$, $ M_2^2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_2$, $ M_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$ | . | -9 | t^2.4 + t^2.64 + t^3.35 + 4*t^3.48 + 4*t^3.83 + 4*t^3.96 + t^4.32 + t^4.79 + 4*t^5.03 + 4*t^5.16 + t^5.27 + 3*t^5.29 + t^5.75 + t^5.99 - 9*t^6. + 4*t^6.11 - 4*t^6.13 + 4*t^6.23 + 4*t^6.47 - 4*t^6.48 + 4*t^6.6 + t^6.7 + t^6.71 + 4*t^6.83 + 10*t^6.95 + 4*t^7.18 + t^7.19 - 4*t^7.2 + 16*t^7.31 - 4*t^7.32 + 4*t^7.43 + 12*t^7.44 + 11*t^7.67 - 5*t^7.68 + 16*t^7.79 - 4*t^7.81 + t^7.91 + 9*t^7.92 + t^8.14 + 4*t^8.38 - 6*t^8.4 + 12*t^8.51 + t^8.62 + 4*t^8.63 + t^8.64 + 3*t^8.65 + 4*t^8.75 + 4*t^8.76 + 12*t^8.87 - 4*t^8.88 + 12*t^8.99 - t^4.68/y - t^7.08/y + t^8.03/y + t^8.29/y + t^8.75/y + (4*t^8.87)/y + t^8.99/y - t^4.68*y - t^7.08*y + t^8.03*y + t^8.29*y + t^8.75*y + 4*t^8.87*y + t^8.99*y | t^2.4/(g2^3*g3^3) + g2^2*g3^2*g4^2*g5^2*t^2.64 + g4^3*g5^3*t^3.35 + g2^3*g4^3*t^3.48 + g3^3*g4^3*t^3.48 + g2^3*g5^3*t^3.48 + g3^3*g5^3*t^3.48 + g1*g4^3*t^3.83 + (g2*g3*g4^4*g5*t^3.83)/g1 + g1*g5^3*t^3.83 + (g2*g3*g4*g5^4*t^3.83)/g1 + g1*g2^3*t^3.96 + g1*g3^3*t^3.96 + (g2^4*g3*g4*g5*t^3.96)/g1 + (g2*g3^4*g4*g5*t^3.96)/g1 + g2*g3*g4*g5*t^4.32 + t^4.79/(g2^6*g3^6) + (g4^5*t^5.03)/(g2*g3*g5) + (2*g4^2*g5^2*t^5.03)/(g2*g3) + (g5^5*t^5.03)/(g2*g3*g4) + (g2^2*g4^2*t^5.16)/(g3*g5) + (g3^2*g4^2*t^5.16)/(g2*g5) + (g2^2*g5^2*t^5.16)/(g3*g4) + (g3^2*g5^2*t^5.16)/(g2*g4) + g2^4*g3^4*g4^4*g5^4*t^5.27 + (g2^5*t^5.29)/(g3*g4*g5) + (g2^2*g3^2*t^5.29)/(g4*g5) + (g3^5*t^5.29)/(g2*g4*g5) + (g4^3*g5^3*t^5.75)/(g2^3*g3^3) + g2^2*g3^2*g4^5*g5^5*t^5.99 - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g4^3 + g2^5*g3^2*g4^5*g5^2*t^6.11 + g2^2*g3^5*g4^5*g5^2*t^6.11 + g2^5*g3^2*g4^2*g5^5*t^6.11 + g2^2*g3^5*g4^2*g5^5*t^6.11 - (g2^3*t^6.13)/g4^3 - (g3^3*t^6.13)/g4^3 - (g2^3*t^6.13)/g5^3 - (g3^3*t^6.13)/g5^3 + (g1*g4^3*t^6.23)/(g2^3*g3^3) + (g4^4*g5*t^6.23)/(g1*g2^2*g3^2) + (g1*g5^3*t^6.23)/(g2^3*g3^3) + (g4*g5^4*t^6.23)/(g1*g2^2*g3^2) + g1*g2^2*g3^2*g4^5*g5^2*t^6.47 + (g2^3*g3^3*g4^6*g5^3*t^6.47)/g1 + g1*g2^2*g3^2*g4^2*g5^5*t^6.47 + (g2^3*g3^3*g4^3*g5^6*t^6.47)/g1 - (g1*t^6.48)/g4^3 - (g1*t^6.48)/g5^3 - (g2*g3*g4*t^6.48)/(g1*g5^2) - (g2*g3*g5*t^6.48)/(g1*g4^2) + g1*g2^5*g3^2*g4^2*g5^2*t^6.6 + g1*g2^2*g3^5*g4^2*g5^2*t^6.6 + (g2^6*g3^3*g4^3*g5^3*t^6.6)/g1 + (g2^3*g3^6*g4^3*g5^3*t^6.6)/g1 + g4^6*g5^6*t^6.7 + (g4*g5*t^6.71)/(g2^2*g3^2) + g2^3*g4^6*g5^3*t^6.83 + g3^3*g4^6*g5^3*t^6.83 + g2^3*g4^3*g5^6*t^6.83 + g3^3*g4^3*g5^6*t^6.83 + g2^6*g4^6*t^6.95 + g2^3*g3^3*g4^6*t^6.95 + g3^6*g4^6*t^6.95 + g2^6*g4^3*g5^3*t^6.95 + 2*g2^3*g3^3*g4^3*g5^3*t^6.95 + g3^6*g4^3*g5^3*t^6.95 + g2^6*g5^6*t^6.95 + g2^3*g3^3*g5^6*t^6.95 + g3^6*g5^6*t^6.95 + g1*g4^6*g5^3*t^7.18 + (g2*g3*g4^7*g5^4*t^7.18)/g1 + g1*g4^3*g5^6*t^7.18 + (g2*g3*g4^4*g5^7*t^7.18)/g1 + t^7.19/(g2^9*g3^9) - (g1*g4*t^7.2)/(g2^2*g3^2*g5^2) - (g4^2*t^7.2)/(g1*g2*g3*g5) - (g1*g5*t^7.2)/(g2^2*g3^2*g4^2) - (g5^2*t^7.2)/(g1*g2*g3*g4) + g1*g2^3*g4^6*t^7.31 + g1*g3^3*g4^6*t^7.31 + (g2^4*g3*g4^7*g5*t^7.31)/g1 + (g2*g3^4*g4^7*g5*t^7.31)/g1 + 2*g1*g2^3*g4^3*g5^3*t^7.31 + 2*g1*g3^3*g4^3*g5^3*t^7.31 + (2*g2^4*g3*g4^4*g5^4*t^7.31)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.31)/g1 + g1*g2^3*g5^6*t^7.31 + g1*g3^3*g5^6*t^7.31 + (g2^4*g3*g4*g5^7*t^7.31)/g1 + (g2*g3^4*g4*g5^7*t^7.31)/g1 - (g1*g2*t^7.32)/(g3^2*g4^2*g5^2) - (g1*g3*t^7.32)/(g2^2*g4^2*g5^2) - (g2^2*t^7.32)/(g1*g3*g4*g5) - (g3^2*t^7.32)/(g1*g2*g4*g5) + (g4^5*t^7.43)/(g2^4*g3^4*g5) + (2*g4^2*g5^2*t^7.43)/(g2^4*g3^4) + (g5^5*t^7.43)/(g2^4*g3^4*g4) + g1*g2^6*g4^3*t^7.44 + g1*g2^3*g3^3*g4^3*t^7.44 + g1*g3^6*g4^3*t^7.44 + (g2^7*g3*g4^4*g5*t^7.44)/g1 + (g2^4*g3^4*g4^4*g5*t^7.44)/g1 + (g2*g3^7*g4^4*g5*t^7.44)/g1 + g1*g2^6*g5^3*t^7.44 + g1*g2^3*g3^3*g5^3*t^7.44 + g1*g3^6*g5^3*t^7.44 + (g2^7*g3*g4*g5^4*t^7.44)/g1 + (g2^4*g3^4*g4*g5^4*t^7.44)/g1 + (g2*g3^7*g4*g5^4*t^7.44)/g1 + g1^2*g4^6*t^7.67 + g2*g3*g4^7*g5*t^7.67 + (g2^2*g3^2*g4^8*g5^2*t^7.67)/g1^2 + g1^2*g4^3*g5^3*t^7.67 + 3*g2*g3*g4^4*g5^4*t^7.67 + (g2^2*g3^2*g4^5*g5^5*t^7.67)/g1^2 + g1^2*g5^6*t^7.67 + g2*g3*g4*g5^7*t^7.67 + (g2^2*g3^2*g4^2*g5^8*t^7.67)/g1^2 - (g4^2*t^7.68)/(g2*g3*g5^4) - (3*t^7.68)/(g2*g3*g4*g5) - (g5^2*t^7.68)/(g2*g3*g4^4) + g1^2*g2^3*g4^3*t^7.79 + g1^2*g3^3*g4^3*t^7.79 + 2*g2^4*g3*g4^4*g5*t^7.79 + 2*g2*g3^4*g4^4*g5*t^7.79 + (g2^5*g3^2*g4^5*g5^2*t^7.79)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.79)/g1^2 + g1^2*g2^3*g5^3*t^7.79 + g1^2*g3^3*g5^3*t^7.79 + 2*g2^4*g3*g4*g5^4*t^7.79 + 2*g2*g3^4*g4*g5^4*t^7.79 + (g2^5*g3^2*g4^2*g5^5*t^7.79)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.79)/g1^2 - (g2^2*t^7.81)/(g3*g4*g5^4) - (g3^2*t^7.81)/(g2*g4*g5^4) - (g2^2*t^7.81)/(g3*g4^4*g5) - (g3^2*t^7.81)/(g2*g4^4*g5) + g2^6*g3^6*g4^6*g5^6*t^7.91 + g1^2*g2^6*t^7.92 + g1^2*g2^3*g3^3*t^7.92 + g1^2*g3^6*t^7.92 + g2^7*g3*g4*g5*t^7.92 + g2^4*g3^4*g4*g5*t^7.92 + g2*g3^7*g4*g5*t^7.92 + (g2^8*g3^2*g4^2*g5^2*t^7.92)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.92)/g1^2 + (g2^2*g3^8*g4^2*g5^2*t^7.92)/g1^2 + (g4^3*g5^3*t^8.14)/(g2^6*g3^6) + (g4^8*g5^2*t^8.38)/(g2*g3) + (2*g4^5*g5^5*t^8.38)/(g2*g3) + (g4^2*g5^8*t^8.38)/(g2*g3) - (4*t^8.4)/(g2^3*g3^3) - (g4^3*t^8.4)/(g2^3*g3^3*g5^3) - (g5^3*t^8.4)/(g2^3*g3^3*g4^3) + (g2^2*g4^8*t^8.51)/(g3*g5) + (g3^2*g4^8*t^8.51)/(g2*g5) + (2*g2^2*g4^5*g5^2*t^8.51)/g3 + (2*g3^2*g4^5*g5^2*t^8.51)/g2 + (2*g2^2*g4^2*g5^5*t^8.51)/g3 + (2*g3^2*g4^2*g5^5*t^8.51)/g2 + (g2^2*g5^8*t^8.51)/(g3*g4) + (g3^2*g5^8*t^8.51)/(g2*g4) + g2^4*g3^4*g4^7*g5^7*t^8.62 + (g1*g4^3*t^8.63)/(g2^6*g3^6) + (g4^4*g5*t^8.63)/(g1*g2^5*g3^5) + (g1*g5^3*t^8.63)/(g2^6*g3^6) + (g4*g5^4*t^8.63)/(g1*g2^5*g3^5) + (g2^5*g4^5*t^8.64)/(g3*g5) + (g3^5*g4^5*t^8.64)/(g2*g5) - g1^2*g2*g3*g4*g5*t^8.64 + (g2^5*g4^2*g5^2*t^8.64)/g3 - 3*g2^2*g3^2*g4^2*g5^2*t^8.64 + (g3^5*g4^2*g5^2*t^8.64)/g2 - (g2^3*g3^3*g4^3*g5^3*t^8.64)/g1^2 + (g2^5*g5^5*t^8.64)/(g3*g4) + (g3^5*g5^5*t^8.64)/(g2*g4) + t^8.65/g4^6 + t^8.65/g5^6 + t^8.65/(g4^3*g5^3) + g2^7*g3^4*g4^7*g5^4*t^8.75 + g2^4*g3^7*g4^7*g5^4*t^8.75 + g2^7*g3^4*g4^4*g5^7*t^8.75 + g2^4*g3^7*g4^4*g5^7*t^8.75 + (g2^8*g4^2*t^8.76)/(g3*g5) + (g3^8*g4^2*t^8.76)/(g2*g5) + (g2^8*g5^2*t^8.76)/(g3*g4) + (g3^8*g5^2*t^8.76)/(g2*g4) + (g4^9*t^8.87)/g1 + (g1*g4^8*t^8.87)/(g2*g3*g5) + (2*g1*g4^5*g5^2*t^8.87)/(g2*g3) + (2*g4^6*g5^3*t^8.87)/g1 + (2*g1*g4^2*g5^5*t^8.87)/(g2*g3) + (2*g4^3*g5^6*t^8.87)/g1 + (g1*g5^8*t^8.87)/(g2*g3*g4) + (g5^9*t^8.87)/g1 - (g1*t^8.88)/(g2^3*g3^3*g4^3) - (g1*t^8.88)/(g2^3*g3^3*g5^3) - (g4*t^8.88)/(g1*g2^2*g3^2*g5^2) - (g5*t^8.88)/(g1*g2^2*g3^2*g4^2) + (g2^3*g4^6*t^8.99)/g1 + (g3^3*g4^6*t^8.99)/g1 + (g1*g2^2*g4^5*t^8.99)/(g3*g5) + (g1*g3^2*g4^5*t^8.99)/(g2*g5) + (g1*g2^2*g4^2*g5^2*t^8.99)/g3 + (g1*g3^2*g4^2*g5^2*t^8.99)/g2 + (g2^3*g4^3*g5^3*t^8.99)/g1 + (g3^3*g4^3*g5^3*t^8.99)/g1 + (g1*g2^2*g5^5*t^8.99)/(g3*g4) + (g1*g3^2*g5^5*t^8.99)/(g2*g4) + (g2^3*g5^6*t^8.99)/g1 + (g3^3*g5^6*t^8.99)/g1 - t^4.68/(g2*g3*g4*g5*y) - t^7.08/(g2^4*g3^4*g4*g5*y) + (g4^2*g5^2*t^8.03)/(g2*g3*y) + (g2^2*g3^2*t^8.29)/(g4*g5*y) + (g4^3*g5^3*t^8.75)/(g2^3*g3^3*y) + (g4^3*t^8.87)/(g2^3*y) + (g4^3*t^8.87)/(g3^3*y) + (g5^3*t^8.87)/(g2^3*y) + (g5^3*t^8.87)/(g3^3*y) + (g2^2*g3^2*g4^5*g5^5*t^8.99)/y - (t^4.68*y)/(g2*g3*g4*g5) - (t^7.08*y)/(g2^4*g3^4*g4*g5) + (g4^2*g5^2*t^8.03*y)/(g2*g3) + (g2^2*g3^2*t^8.29*y)/(g4*g5) + (g4^3*g5^3*t^8.75*y)/(g2^3*g3^3) + (g4^3*t^8.87*y)/g2^3 + (g4^3*t^8.87*y)/g3^3 + (g5^3*t^8.87*y)/g2^3 + (g5^3*t^8.87*y)/g3^3 + g2^2*g3^2*g4^5*g5^5*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55719 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.8691 | 1.0641 | 0.8168 | [X:[], M:[0.8804, 0.7989], q:[0.7201, 0.7201, 0.6005], qb:[0.6005, 0.5598, 0.5598], phi:[0.5598]] | t^2.4 + t^2.64 + t^3.36 + 4*t^3.48 + 4*t^3.84 + 4*t^3.96 + t^4.32 + t^4.79 + 4*t^5.04 + 4*t^5.16 + 4*t^5.28 + t^5.76 - 8*t^6. - t^4.68/y - t^4.68*y | detail | |
55703 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ + $ M_1^2$ | 0.856 | 1.0293 | 0.8316 | [X:[], M:[1.0, 0.726], q:[0.75, 0.75, 0.637], qb:[0.637, 0.613, 0.613], phi:[0.5]] | t^2.18 + t^3. + t^3.68 + 4*t^3.75 + 4*t^4.09 + 4*t^4.16 + t^4.36 + t^4.5 + 4*t^5.18 + 4*t^5.25 + 3*t^5.32 + t^5.86 - 8*t^6. - t^4.5/y - t^4.5*y | detail | |
55767 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ | 0.8895 | 1.1021 | 0.807 | [X:[], M:[0.8851, 0.7999, 0.6996], q:[0.7119, 0.7306, 0.6], qb:[0.6, 0.5698, 0.5578], phi:[0.5574]] | t^2.1 + t^2.4 + t^2.66 + t^3.38 + 2*t^3.47 + 2*t^3.51 + t^3.81 + t^3.85 + t^3.87 + 2*t^3.94 + 2*t^3.99 + t^4.2 + t^4.33 + t^4.5 + t^4.75 + t^4.8 + t^5.02 + 2*t^5.06 + t^5.09 + 2*t^5.15 + 2*t^5.18 + 3*t^5.27 + t^5.31 + t^5.48 + 2*t^5.57 + 2*t^5.61 + t^5.78 + t^5.91 + t^5.94 - 7*t^6. - t^4.67/y - t^4.67*y | detail | |
55733 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ | 0.8457 | 1.0282 | 0.8225 | [X:[], M:[0.9176, 0.868], q:[0.7294, 0.7294, 0.566], qb:[0.566, 0.7294, 0.515], phi:[0.5412]] | t^2.6 + t^2.75 + 2*t^3.24 + 3*t^3.73 + 6*t^3.89 + 3*t^4.38 + t^4.71 + 2*t^4.87 + 3*t^5.02 + t^5.21 + t^5.36 + t^5.51 - 6*t^6. - t^4.62/y - t^4.62*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55447 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ | 0.8544 | 1.0432 | 0.8191 | [X:[], M:[0.8516], q:[0.7129, 0.7129, 0.5693], qb:[0.5693, 0.5693, 0.5693], phi:[0.5742]] | t^2.55 + 6*t^3.42 + 8*t^3.85 + t^4.28 + t^5.11 + 10*t^5.14 + 6*t^5.97 - 17*t^6. - t^4.72/y - t^4.72*y | detail |