Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55719 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ + ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$ 0.8691 1.0641 0.8168 [M:[0.8804, 0.7989], q:[0.7201, 0.7201, 0.6005], qb:[0.6005, 0.5598, 0.5598], phi:[0.5598]] [M:[[0, 0, -2, -2], [0, 0, 5, 5]], q:[[-1, 0, -1, -1], [1, 0, 0, 0], [0, -1, -5, -5]], qb:[[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]], phi:[[0, 0, 1, 1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{3}$, ${ }q_{2}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$ ${}$ -8 t^2.397 + t^2.641 + t^3.359 + 4*t^3.481 + 4*t^3.84 + 4*t^3.962 + t^4.321 + t^4.793 + 4*t^5.038 + 4*t^5.16 + 4*t^5.283 + t^5.755 - 8*t^6. + 4*t^6.236 + 4*t^6.603 + 2*t^6.717 + 4*t^6.84 + 10*t^6.962 + t^7.19 + 12*t^7.321 + 4*t^7.435 + 12*t^7.443 + 6*t^7.679 + 12*t^7.802 + 10*t^7.924 + t^8.152 - 2*t^8.397 + 12*t^8.519 + 4*t^8.633 + 5*t^8.641 + 8*t^8.764 + 8*t^8.878 - t^4.679/y - t^7.076/y + t^8.038/y + t^8.283/y + t^8.755/y + (4*t^8.878)/y - t^4.679*y - t^7.076*y + t^8.038*y + t^8.283*y + t^8.755*y + 4*t^8.878*y g3^5*g4^5*t^2.397 + t^2.641/(g3^2*g4^2) + g3^2*g4^2*t^3.359 + g2*g3^2*t^3.481 + t^3.481/(g2*g3^3*g4^5) + t^3.481/(g2*g3^5*g4^3) + g2*g4^2*t^3.481 + g1*g3^2*t^3.84 + (g3*t^3.84)/(g1*g4) + (g4*t^3.84)/(g1*g3) + g1*g4^2*t^3.84 + g1*g2*t^3.962 + t^3.962/(g1*g2*g3^6*g4^6) + (g1*t^3.962)/(g2*g3^5*g4^5) + (g2*t^3.962)/(g1*g3*g4) + t^4.321/(g3*g4) + g3^10*g4^10*t^4.793 + g3^5*g4*t^5.038 + 2*g3^3*g4^3*t^5.038 + g3*g4^5*t^5.038 + t^5.16/(g2*g3^2*g4^4) + t^5.16/(g2*g3^4*g4^2) + g2*g3^3*g4*t^5.16 + g2*g3*g4^3*t^5.16 + t^5.283/(g2^2*g3^9*g4^9) + (2*t^5.283)/(g3^4*g4^4) + g2^2*g3*g4*t^5.283 + g3^7*g4^7*t^5.755 - 4*t^6. - t^6./(g2^2*g3^5*g4^5) - (g3^2*t^6.)/g4^2 - (g4^2*t^6.)/g3^2 - g2^2*g3^5*g4^5*t^6. + (g3^6*g4^4*t^6.236)/g1 + g1*g3^7*g4^5*t^6.236 + (g3^4*g4^6*t^6.236)/g1 + g1*g3^5*g4^7*t^6.236 + t^6.603/(g1*g2*g3^8*g4^8) + (g1*t^6.603)/(g2*g3^7*g4^7) + (g2*t^6.603)/(g1*g3^3*g4^3) + (g1*g2*t^6.603)/(g3^2*g4^2) + 2*g3^4*g4^4*t^6.717 + t^6.84/(g2*g3*g4^3) + t^6.84/(g2*g3^3*g4) + g2*g3^4*g4^2*t^6.84 + g2*g3^2*g4^4*t^6.84 + g2^2*g3^4*t^6.962 + t^6.962/(g2^2*g3^6*g4^10) + t^6.962/(g2^2*g3^8*g4^8) + t^6.962/(g2^2*g3^10*g4^6) + t^6.962/(g3*g4^5) + (2*t^6.962)/(g3^3*g4^3) + t^6.962/(g3^5*g4) + g2^2*g3^2*g4^2*t^6.962 + g2^2*g4^4*t^6.962 + g3^15*g4^15*t^7.19 + g1*g2*g3^4*t^7.321 + t^7.321/(g1*g2*g3^2*g4^6) + (g1*t^7.321)/(g2*g3*g4^5) + t^7.321/(g1*g2*g3^4*g4^4) + (g1*t^7.321)/(g2*g3^3*g4^3) + t^7.321/(g1*g2*g3^6*g4^2) + (g1*t^7.321)/(g2*g3^5*g4) + (g2*g3^3*t^7.321)/(g1*g4) + (g2*g3*g4*t^7.321)/g1 + g1*g2*g3^2*g4^2*t^7.321 + (g2*g4^3*t^7.321)/(g1*g3) + g1*g2*g4^4*t^7.321 + g3^10*g4^6*t^7.435 + 2*g3^8*g4^8*t^7.435 + g3^6*g4^10*t^7.435 + g1*g2^2*g3^2*t^7.443 + t^7.443/(g1*g2^2*g3^9*g4^11) + (g1*t^7.443)/(g2^2*g3^8*g4^10) + t^7.443/(g1*g2^2*g3^11*g4^9) + (g1*t^7.443)/(g2^2*g3^10*g4^8) + t^7.443/(g1*g3^4*g4^6) + (g1*t^7.443)/(g3^3*g4^5) + t^7.443/(g1*g3^6*g4^4) + (g1*t^7.443)/(g3^5*g4^3) + (g2^2*g3*t^7.443)/(g1*g4) + (g2^2*g4*t^7.443)/(g1*g3) + g1*g2^2*g4^2*t^7.443 + t^7.679/g1^2 + g1^2*g3^4*t^7.679 + (g3^2*t^7.679)/(g1^2*g4^2) + (g4^2*t^7.679)/(g1^2*g3^2) + g1^2*g3^2*g4^2*t^7.679 + g1^2*g4^4*t^7.679 + (g2*t^7.802)/(g1^2*g3^2) + g1^2*g2*g3^2*t^7.802 + t^7.802/(g1^2*g2*g3^5*g4^7) + t^7.802/(g2*g3^4*g4^6) + t^7.802/(g1^2*g2*g3^7*g4^5) + (g1^2*t^7.802)/(g2*g3^3*g4^5) + t^7.802/(g2*g3^6*g4^4) + (g1^2*t^7.802)/(g2*g3^5*g4^3) + (g2*t^7.802)/(g1^2*g4^2) + (g2*g3*t^7.802)/g4 + (g2*g4*t^7.802)/g3 + g1^2*g2*g4^2*t^7.802 + g1^2*g2^2*t^7.924 + t^7.924/(g1^2*g2^2*g3^12*g4^12) + t^7.924/(g2^2*g3^11*g4^11) + (g1^2*t^7.924)/(g2^2*g3^10*g4^10) + t^7.924/(g1^2*g3^7*g4^7) + (2*t^7.924)/(g3^6*g4^6) + (g1^2*t^7.924)/(g3^5*g4^5) + (g2^2*t^7.924)/(g1^2*g3^2*g4^2) + (g2^2*t^7.924)/(g3*g4) + g3^12*g4^12*t^8.152 - 2*g3^5*g4^5*t^8.397 + (2*t^8.519)/(g2*g3^2) + (g3^2*t^8.519)/(g2*g4^4) + (2*t^8.519)/(g2*g4^2) + g2*g3^7*g4*t^8.519 + (g4^2*t^8.519)/(g2*g3^4) + 2*g2*g3^5*g4^3*t^8.519 + 2*g2*g3^3*g4^5*t^8.519 + g2*g3*g4^7*t^8.519 + (g3^11*g4^9*t^8.633)/g1 + g1*g3^12*g4^10*t^8.633 + (g3^9*g4^11*t^8.633)/g1 + g1*g3^10*g4^12*t^8.633 + t^8.641/g3^4 + t^8.641/(g2^2*g3^5*g4^9) + t^8.641/(g2^2*g3^7*g4^7) + t^8.641/(g2^2*g3^9*g4^5) + t^8.641/g4^4 - t^8.641/(g1^2*g3^3*g4^3) - t^8.641/(g3^2*g4^2) - (g1^2*t^8.641)/(g3*g4) + g2^2*g3^5*g4*t^8.641 + g2^2*g3^3*g4^3*t^8.641 + g2^2*g3*g4^5*t^8.641 + t^8.764/(g2^3*g3^12*g4^14) + t^8.764/(g2^3*g3^14*g4^12) + t^8.764/(g2*g3^7*g4^9) + t^8.764/(g2*g3^9*g4^7) + (g2*t^8.764)/(g3^2*g4^4) + (g2*t^8.764)/(g3^4*g4^2) + g2^3*g3^3*g4*t^8.764 + g2^3*g3*g4^3*t^8.764 + (g3^6*t^8.878)/g1 + g1*g3^7*g4*t^8.878 + (g3^4*g4^2*t^8.878)/g1 + g1*g3^5*g4^3*t^8.878 + (g3^2*g4^4*t^8.878)/g1 + g1*g3^3*g4^5*t^8.878 + (g4^6*t^8.878)/g1 + g1*g3*g4^7*t^8.878 - (g3*g4*t^4.679)/y - (g3^6*g4^6*t^7.076)/y + (g3^3*g4^3*t^8.038)/y + t^8.283/(g3^4*g4^4*y) + (g3^7*g4^7*t^8.755)/y + (g3^2*t^8.878)/(g2*y) + (g4^2*t^8.878)/(g2*y) + (g2*g3^7*g4^5*t^8.878)/y + (g2*g3^5*g4^7*t^8.878)/y - g3*g4*t^4.679*y - g3^6*g4^6*t^7.076*y + g3^3*g4^3*t^8.038*y + (t^8.283*y)/(g3^4*g4^4) + g3^7*g4^7*t^8.755*y + (g3^2*t^8.878*y)/g2 + (g4^2*t^8.878*y)/g2 + g2*g3^7*g4^5*t^8.878*y + g2*g3^5*g4^7*t^8.878*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55680 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ 0.8691 1.0645 0.8165 [M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] t^2.397 + t^2.636 + t^3.351 + 4*t^3.477 + 4*t^3.834 + 4*t^3.96 + t^4.318 + t^4.794 + 4*t^5.033 + 4*t^5.159 + t^5.271 + 3*t^5.285 + t^5.748 + t^5.986 - 9*t^6. - t^4.682/y - t^4.682*y detail