Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55447 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ | 0.8544 | 1.0432 | 0.8191 | [M:[0.8516], q:[0.7129, 0.7129, 0.5693], qb:[0.5693, 0.5693, 0.5693], phi:[0.5742]] | [M:[[0, 2, 2, 2, 2]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }M_{1}q_{3}\tilde{q}_{1}$, ${ }M_{1}q_{3}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$ | ${}$ | -17 | t^2.555 + 6*t^3.416 + 8*t^3.847 + t^4.277 + t^5.11 + 10*t^5.139 + 6*t^5.971 - 17*t^6. + 8*t^6.402 - 8*t^6.431 + 21*t^6.832 + 40*t^7.263 - 8*t^7.292 + t^7.664 + 36*t^7.693 - 16*t^7.723 + 6*t^8.526 + 26*t^8.555 + 10*t^8.584 + 8*t^8.956 + 32*t^8.985 - t^4.723/y + (6*t^8.971)/y - t^4.723*y + 6*t^8.971*y | g2^2*g3^2*g4^2*g5^2*t^2.555 + g2^3*g3^3*t^3.416 + g2^3*g4^3*t^3.416 + g3^3*g4^3*t^3.416 + g2^3*g5^3*t^3.416 + g3^3*g5^3*t^3.416 + g4^3*g5^3*t^3.416 + g1*g2^3*t^3.847 + g1*g3^3*t^3.847 + g1*g4^3*t^3.847 + (g2^4*g3*g4*g5*t^3.847)/g1 + (g2*g3^4*g4*g5*t^3.847)/g1 + (g2*g3*g4^4*g5*t^3.847)/g1 + g1*g5^3*t^3.847 + (g2*g3*g4*g5^4*t^3.847)/g1 + g2*g3*g4*g5*t^4.277 + g2^4*g3^4*g4^4*g5^4*t^5.11 + (g2^5*t^5.139)/(g3*g4*g5) + (g2^2*g3^2*t^5.139)/(g4*g5) + (g3^5*t^5.139)/(g2*g4*g5) + (g2^2*g4^2*t^5.139)/(g3*g5) + (g3^2*g4^2*t^5.139)/(g2*g5) + (g4^5*t^5.139)/(g2*g3*g5) + (g2^2*g5^2*t^5.139)/(g3*g4) + (g3^2*g5^2*t^5.139)/(g2*g4) + (g4^2*g5^2*t^5.139)/(g2*g3) + (g5^5*t^5.139)/(g2*g3*g4) + g2^5*g3^5*g4^2*g5^2*t^5.971 + g2^5*g3^2*g4^5*g5^2*t^5.971 + g2^2*g3^5*g4^5*g5^2*t^5.971 + g2^5*g3^2*g4^2*g5^5*t^5.971 + g2^2*g3^5*g4^2*g5^5*t^5.971 + g2^2*g3^2*g4^5*g5^5*t^5.971 - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 - (g2^3*t^6.)/g4^3 - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g2^3 - (g4^3*t^6.)/g3^3 - (g2^3*t^6.)/g5^3 - (g3^3*t^6.)/g5^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g2^3 - (g5^3*t^6.)/g3^3 - (g5^3*t^6.)/g4^3 + g1*g2^5*g3^2*g4^2*g5^2*t^6.402 + g1*g2^2*g3^5*g4^2*g5^2*t^6.402 + g1*g2^2*g3^2*g4^5*g5^2*t^6.402 + (g2^6*g3^3*g4^3*g5^3*t^6.402)/g1 + (g2^3*g3^6*g4^3*g5^3*t^6.402)/g1 + (g2^3*g3^3*g4^6*g5^3*t^6.402)/g1 + g1*g2^2*g3^2*g4^2*g5^5*t^6.402 + (g2^3*g3^3*g4^3*g5^6*t^6.402)/g1 - (g1*t^6.431)/g2^3 - (g1*t^6.431)/g3^3 - (g1*t^6.431)/g4^3 - (g1*t^6.431)/g5^3 - (g2*g3*g4*t^6.431)/(g1*g5^2) - (g2*g3*g5*t^6.431)/(g1*g4^2) - (g2*g4*g5*t^6.431)/(g1*g3^2) - (g3*g4*g5*t^6.431)/(g1*g2^2) + g2^6*g3^6*t^6.832 + g2^6*g3^3*g4^3*t^6.832 + g2^3*g3^6*g4^3*t^6.832 + g2^6*g4^6*t^6.832 + g2^3*g3^3*g4^6*t^6.832 + g3^6*g4^6*t^6.832 + g2^6*g3^3*g5^3*t^6.832 + g2^3*g3^6*g5^3*t^6.832 + g2^6*g4^3*g5^3*t^6.832 + 3*g2^3*g3^3*g4^3*g5^3*t^6.832 + g3^6*g4^3*g5^3*t^6.832 + g2^3*g4^6*g5^3*t^6.832 + g3^3*g4^6*g5^3*t^6.832 + g2^6*g5^6*t^6.832 + g2^3*g3^3*g5^6*t^6.832 + g3^6*g5^6*t^6.832 + g2^3*g4^3*g5^6*t^6.832 + g3^3*g4^3*g5^6*t^6.832 + g4^6*g5^6*t^6.832 + g1*g2^6*g3^3*t^7.263 + g1*g2^3*g3^6*t^7.263 + g1*g2^6*g4^3*t^7.263 + 2*g1*g2^3*g3^3*g4^3*t^7.263 + g1*g3^6*g4^3*t^7.263 + g1*g2^3*g4^6*t^7.263 + g1*g3^3*g4^6*t^7.263 + (g2^7*g3^4*g4*g5*t^7.263)/g1 + (g2^4*g3^7*g4*g5*t^7.263)/g1 + (g2^7*g3*g4^4*g5*t^7.263)/g1 + (2*g2^4*g3^4*g4^4*g5*t^7.263)/g1 + (g2*g3^7*g4^4*g5*t^7.263)/g1 + (g2^4*g3*g4^7*g5*t^7.263)/g1 + (g2*g3^4*g4^7*g5*t^7.263)/g1 + g1*g2^6*g5^3*t^7.263 + 2*g1*g2^3*g3^3*g5^3*t^7.263 + g1*g3^6*g5^3*t^7.263 + 2*g1*g2^3*g4^3*g5^3*t^7.263 + 2*g1*g3^3*g4^3*g5^3*t^7.263 + g1*g4^6*g5^3*t^7.263 + (g2^7*g3*g4*g5^4*t^7.263)/g1 + (2*g2^4*g3^4*g4*g5^4*t^7.263)/g1 + (g2*g3^7*g4*g5^4*t^7.263)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.263)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.263)/g1 + (g2*g3*g4^7*g5^4*t^7.263)/g1 + g1*g2^3*g5^6*t^7.263 + g1*g3^3*g5^6*t^7.263 + g1*g4^3*g5^6*t^7.263 + (g2^4*g3*g4*g5^7*t^7.263)/g1 + (g2*g3^4*g4*g5^7*t^7.263)/g1 + (g2*g3*g4^4*g5^7*t^7.263)/g1 - (g1*g2*t^7.292)/(g3^2*g4^2*g5^2) - (g1*g3*t^7.292)/(g2^2*g4^2*g5^2) - (g1*g4*t^7.292)/(g2^2*g3^2*g5^2) - (g2^2*t^7.292)/(g1*g3*g4*g5) - (g3^2*t^7.292)/(g1*g2*g4*g5) - (g4^2*t^7.292)/(g1*g2*g3*g5) - (g1*g5*t^7.292)/(g2^2*g3^2*g4^2) - (g5^2*t^7.292)/(g1*g2*g3*g4) + g2^6*g3^6*g4^6*g5^6*t^7.664 + g1^2*g2^6*t^7.693 + g1^2*g2^3*g3^3*t^7.693 + g1^2*g3^6*t^7.693 + g1^2*g2^3*g4^3*t^7.693 + g1^2*g3^3*g4^3*t^7.693 + g1^2*g4^6*t^7.693 + g2^7*g3*g4*g5*t^7.693 + 2*g2^4*g3^4*g4*g5*t^7.693 + g2*g3^7*g4*g5*t^7.693 + 2*g2^4*g3*g4^4*g5*t^7.693 + 2*g2*g3^4*g4^4*g5*t^7.693 + g2*g3*g4^7*g5*t^7.693 + (g2^8*g3^2*g4^2*g5^2*t^7.693)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.693)/g1^2 + (g2^2*g3^8*g4^2*g5^2*t^7.693)/g1^2 + (g2^5*g3^2*g4^5*g5^2*t^7.693)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.693)/g1^2 + (g2^2*g3^2*g4^8*g5^2*t^7.693)/g1^2 + g1^2*g2^3*g5^3*t^7.693 + g1^2*g3^3*g5^3*t^7.693 + g1^2*g4^3*g5^3*t^7.693 + 2*g2^4*g3*g4*g5^4*t^7.693 + 2*g2*g3^4*g4*g5^4*t^7.693 + 2*g2*g3*g4^4*g5^4*t^7.693 + (g2^5*g3^2*g4^2*g5^5*t^7.693)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.693)/g1^2 + (g2^2*g3^2*g4^5*g5^5*t^7.693)/g1^2 + g1^2*g5^6*t^7.693 + g2*g3*g4*g5^7*t^7.693 + (g2^2*g3^2*g4^2*g5^8*t^7.693)/g1^2 - (g2^2*t^7.723)/(g3*g4*g5^4) - (g3^2*t^7.723)/(g2*g4*g5^4) - (g4^2*t^7.723)/(g2*g3*g5^4) - (g2^2*t^7.723)/(g3*g4^4*g5) - (g3^2*t^7.723)/(g2*g4^4*g5) - (g2^2*t^7.723)/(g3^4*g4*g5) - (4*t^7.723)/(g2*g3*g4*g5) - (g3^2*t^7.723)/(g2^4*g4*g5) - (g4^2*t^7.723)/(g2*g3^4*g5) - (g4^2*t^7.723)/(g2^4*g3*g5) - (g5^2*t^7.723)/(g2*g3*g4^4) - (g5^2*t^7.723)/(g2*g3^4*g4) - (g5^2*t^7.723)/(g2^4*g3*g4) + g2^7*g3^7*g4^4*g5^4*t^8.526 + g2^7*g3^4*g4^7*g5^4*t^8.526 + g2^4*g3^7*g4^7*g5^4*t^8.526 + g2^7*g3^4*g4^4*g5^7*t^8.526 + g2^4*g3^7*g4^4*g5^7*t^8.526 + g2^4*g3^4*g4^7*g5^7*t^8.526 + (g2^8*g3^2*t^8.555)/(g4*g5) + (g2^5*g3^5*t^8.555)/(g4*g5) + (g2^2*g3^8*t^8.555)/(g4*g5) + (g2^8*g4^2*t^8.555)/(g3*g5) + (g2^5*g3^2*g4^2*t^8.555)/g5 + (g2^2*g3^5*g4^2*t^8.555)/g5 + (g3^8*g4^2*t^8.555)/(g2*g5) + (g2^5*g4^5*t^8.555)/(g3*g5) + (g2^2*g3^2*g4^5*t^8.555)/g5 + (g3^5*g4^5*t^8.555)/(g2*g5) + (g2^2*g4^8*t^8.555)/(g3*g5) + (g3^2*g4^8*t^8.555)/(g2*g5) - g1^2*g2*g3*g4*g5*t^8.555 + (g2^8*g5^2*t^8.555)/(g3*g4) + (g2^5*g3^2*g5^2*t^8.555)/g4 + (g2^2*g3^5*g5^2*t^8.555)/g4 + (g3^8*g5^2*t^8.555)/(g2*g4) + (g2^5*g4^2*g5^2*t^8.555)/g3 - 2*g2^2*g3^2*g4^2*g5^2*t^8.555 + (g3^5*g4^2*g5^2*t^8.555)/g2 + (g2^2*g4^5*g5^2*t^8.555)/g3 + (g3^2*g4^5*g5^2*t^8.555)/g2 + (g4^8*g5^2*t^8.555)/(g2*g3) - (g2^3*g3^3*g4^3*g5^3*t^8.555)/g1^2 + (g2^5*g5^5*t^8.555)/(g3*g4) + (g2^2*g3^2*g5^5*t^8.555)/g4 + (g3^5*g5^5*t^8.555)/(g2*g4) + (g2^2*g4^2*g5^5*t^8.555)/g3 + (g3^2*g4^2*g5^5*t^8.555)/g2 + (g4^5*g5^5*t^8.555)/(g2*g3) + (g2^2*g5^8*t^8.555)/(g3*g4) + (g3^2*g5^8*t^8.555)/(g2*g4) + (g4^2*g5^8*t^8.555)/(g2*g3) + t^8.584/g2^6 + t^8.584/g3^6 + t^8.584/(g2^3*g3^3) + t^8.584/g4^6 + t^8.584/(g2^3*g4^3) + t^8.584/(g3^3*g4^3) + t^8.584/g5^6 + t^8.584/(g2^3*g5^3) + t^8.584/(g3^3*g5^3) + t^8.584/(g4^3*g5^3) + g1*g2^7*g3^4*g4^4*g5^4*t^8.956 + g1*g2^4*g3^7*g4^4*g5^4*t^8.956 + g1*g2^4*g3^4*g4^7*g5^4*t^8.956 + (g2^8*g3^5*g4^5*g5^5*t^8.956)/g1 + (g2^5*g3^8*g4^5*g5^5*t^8.956)/g1 + (g2^5*g3^5*g4^8*g5^5*t^8.956)/g1 + g1*g2^4*g3^4*g4^4*g5^7*t^8.956 + (g2^5*g3^5*g4^5*g5^8*t^8.956)/g1 + (g2^9*t^8.985)/g1 + (g2^6*g3^3*t^8.985)/g1 + (g2^3*g3^6*t^8.985)/g1 + (g3^9*t^8.985)/g1 + (g2^6*g4^3*t^8.985)/g1 + (g3^6*g4^3*t^8.985)/g1 + (g2^3*g4^6*t^8.985)/g1 + (g3^3*g4^6*t^8.985)/g1 + (g4^9*t^8.985)/g1 + (g1*g2^8*t^8.985)/(g3*g4*g5) + (g1*g2^5*g3^2*t^8.985)/(g4*g5) + (g1*g2^2*g3^5*t^8.985)/(g4*g5) + (g1*g3^8*t^8.985)/(g2*g4*g5) + (g1*g2^5*g4^2*t^8.985)/(g3*g5) + (g1*g3^5*g4^2*t^8.985)/(g2*g5) + (g1*g2^2*g4^5*t^8.985)/(g3*g5) + (g1*g3^2*g4^5*t^8.985)/(g2*g5) + (g1*g4^8*t^8.985)/(g2*g3*g5) + (g1*g2^5*g5^2*t^8.985)/(g3*g4) + (g1*g3^5*g5^2*t^8.985)/(g2*g4) + (g1*g4^5*g5^2*t^8.985)/(g2*g3) + (g2^6*g5^3*t^8.985)/g1 + (g3^6*g5^3*t^8.985)/g1 + (g4^6*g5^3*t^8.985)/g1 + (g1*g2^2*g5^5*t^8.985)/(g3*g4) + (g1*g3^2*g5^5*t^8.985)/(g2*g4) + (g1*g4^2*g5^5*t^8.985)/(g2*g3) + (g2^3*g5^6*t^8.985)/g1 + (g3^3*g5^6*t^8.985)/g1 + (g4^3*g5^6*t^8.985)/g1 + (g1*g5^8*t^8.985)/(g2*g3*g4) + (g5^9*t^8.985)/g1 - t^4.723/(g2*g3*g4*g5*y) + (g2^5*g3^5*g4^2*g5^2*t^8.971)/y + (g2^5*g3^2*g4^5*g5^2*t^8.971)/y + (g2^2*g3^5*g4^5*g5^2*t^8.971)/y + (g2^5*g3^2*g4^2*g5^5*t^8.971)/y + (g2^2*g3^5*g4^2*g5^5*t^8.971)/y + (g2^2*g3^2*g4^5*g5^5*t^8.971)/y - (t^4.723*y)/(g2*g3*g4*g5) + g2^5*g3^5*g4^2*g5^2*t^8.971*y + g2^5*g3^2*g4^5*g5^2*t^8.971*y + g2^2*g3^5*g4^5*g5^2*t^8.971*y + g2^5*g3^2*g4^2*g5^5*t^8.971*y + g2^2*g3^5*g4^2*g5^5*t^8.971*y + g2^2*g3^2*g4^5*g5^5*t^8.971*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55659 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.8544 | 1.0423 | 0.8198 | [M:[0.8556], q:[0.7139, 0.7139, 0.5695], qb:[0.5722, 0.5722, 0.5695], phi:[0.5722]] | t^2.567 + t^3.417 + 4*t^3.425 + t^3.433 + 4*t^3.85 + 4*t^3.858 + t^4.283 + 4*t^5.134 + 4*t^5.142 + 3*t^5.15 + t^5.984 - 8*t^6. - t^4.717/y - t^4.717*y | detail | |
55592 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}^{2}$ | 0.8364 | 0.9927 | 0.8426 | [M:[1.0], q:[0.75, 0.75, 0.625], qb:[0.625, 0.625, 0.625], phi:[0.5]] | t^3. + 6*t^3.75 + 8*t^4.125 + t^4.5 + 10*t^5.25 - 16*t^6. - t^4.5/y - t^4.5*y | detail | {a: 1713/2048, c: 2033/2048, M1: 1, q1: 3/4, q2: 3/4, q3: 5/8, qb1: 5/8, qb2: 5/8, qb3: 5/8, phi1: 1/2} |
55680 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ | 0.8691 | 1.0645 | 0.8165 | [M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] | t^2.397 + t^2.636 + t^3.351 + 4*t^3.477 + 4*t^3.834 + 4*t^3.96 + t^4.318 + t^4.794 + 4*t^5.033 + 4*t^5.159 + t^5.271 + 3*t^5.285 + t^5.748 + t^5.986 - 9*t^6. - t^4.682/y - t^4.682*y | detail | |
55681 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}q_{3}\tilde{q}_{1}$ | 0.8008 | 0.9717 | 0.8242 | [M:[0.9333], q:[0.7333, 0.7333, 0.7333], qb:[0.7333, 0.4667, 0.4667], phi:[0.5333]] | 2*t^2.8 + 8*t^3.6 + 9*t^4.4 + 3*t^5.6 - 10*t^6. - t^4.6/y - t^4.6*y | detail | {a: 961/1200, c: 583/600, M1: 14/15, q1: 11/15, q2: 11/15, q3: 11/15, qb1: 11/15, qb2: 7/15, qb3: 7/15, phi1: 8/15} |
55690 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}q_{3}^{2}$ | 0.8366 | 1.0194 | 0.8207 | [M:[0.8786], q:[0.7197, 0.7197, 0.7197], qb:[0.5328, 0.5328, 0.5328], phi:[0.5607]] | t^2.636 + 3*t^3.197 + 9*t^3.757 + 3*t^4.318 + 6*t^4.879 + t^5.272 + 3*t^5.832 - 12*t^6. - t^4.682/y - t^4.682*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55430 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ | 0.8434 | 1.0148 | 0.831 | [q:[0.7257, 0.7257, 0.5885], qb:[0.5885, 0.5885, 0.5885], phi:[0.5487]] | t^3.292 + 6*t^3.531 + 8*t^3.942 + t^4.354 + 10*t^5.177 - 17*t^6. - t^4.646/y - t^4.646*y | detail |