Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55447 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ | 0.8544 | 1.0432 | 0.8191 | [X:[], M:[0.8516], q:[0.7129, 0.7129, 0.5693], qb:[0.5693, 0.5693, 0.5693], phi:[0.5742]] | [X:[], M:[[0, 2, 2, 2, 2]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1q_2$, $ M_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$ | . | -17 | t^2.55 + 6*t^3.42 + 8*t^3.85 + t^4.28 + t^5.11 + 10*t^5.14 + 6*t^5.97 - 17*t^6. + 8*t^6.4 - 8*t^6.43 + 21*t^6.83 + 40*t^7.26 - 8*t^7.29 + t^7.66 + 36*t^7.69 - 16*t^7.72 + 6*t^8.53 + 26*t^8.55 + 10*t^8.58 + 8*t^8.96 + 32*t^8.99 - t^4.72/y + (6*t^8.97)/y - t^4.72*y + 6*t^8.97*y | g2^2*g3^2*g4^2*g5^2*t^2.55 + g2^3*g3^3*t^3.42 + g2^3*g4^3*t^3.42 + g3^3*g4^3*t^3.42 + g2^3*g5^3*t^3.42 + g3^3*g5^3*t^3.42 + g4^3*g5^3*t^3.42 + g1*g2^3*t^3.85 + g1*g3^3*t^3.85 + g1*g4^3*t^3.85 + (g2^4*g3*g4*g5*t^3.85)/g1 + (g2*g3^4*g4*g5*t^3.85)/g1 + (g2*g3*g4^4*g5*t^3.85)/g1 + g1*g5^3*t^3.85 + (g2*g3*g4*g5^4*t^3.85)/g1 + g2*g3*g4*g5*t^4.28 + g2^4*g3^4*g4^4*g5^4*t^5.11 + (g2^5*t^5.14)/(g3*g4*g5) + (g2^2*g3^2*t^5.14)/(g4*g5) + (g3^5*t^5.14)/(g2*g4*g5) + (g2^2*g4^2*t^5.14)/(g3*g5) + (g3^2*g4^2*t^5.14)/(g2*g5) + (g4^5*t^5.14)/(g2*g3*g5) + (g2^2*g5^2*t^5.14)/(g3*g4) + (g3^2*g5^2*t^5.14)/(g2*g4) + (g4^2*g5^2*t^5.14)/(g2*g3) + (g5^5*t^5.14)/(g2*g3*g4) + g2^5*g3^5*g4^2*g5^2*t^5.97 + g2^5*g3^2*g4^5*g5^2*t^5.97 + g2^2*g3^5*g4^5*g5^2*t^5.97 + g2^5*g3^2*g4^2*g5^5*t^5.97 + g2^2*g3^5*g4^2*g5^5*t^5.97 + g2^2*g3^2*g4^5*g5^5*t^5.97 - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 - (g2^3*t^6.)/g4^3 - (g3^3*t^6.)/g4^3 - (g4^3*t^6.)/g2^3 - (g4^3*t^6.)/g3^3 - (g2^3*t^6.)/g5^3 - (g3^3*t^6.)/g5^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g2^3 - (g5^3*t^6.)/g3^3 - (g5^3*t^6.)/g4^3 + g1*g2^5*g3^2*g4^2*g5^2*t^6.4 + g1*g2^2*g3^5*g4^2*g5^2*t^6.4 + g1*g2^2*g3^2*g4^5*g5^2*t^6.4 + (g2^6*g3^3*g4^3*g5^3*t^6.4)/g1 + (g2^3*g3^6*g4^3*g5^3*t^6.4)/g1 + (g2^3*g3^3*g4^6*g5^3*t^6.4)/g1 + g1*g2^2*g3^2*g4^2*g5^5*t^6.4 + (g2^3*g3^3*g4^3*g5^6*t^6.4)/g1 - (g1*t^6.43)/g2^3 - (g1*t^6.43)/g3^3 - (g1*t^6.43)/g4^3 - (g1*t^6.43)/g5^3 - (g2*g3*g4*t^6.43)/(g1*g5^2) - (g2*g3*g5*t^6.43)/(g1*g4^2) - (g2*g4*g5*t^6.43)/(g1*g3^2) - (g3*g4*g5*t^6.43)/(g1*g2^2) + g2^6*g3^6*t^6.83 + g2^6*g3^3*g4^3*t^6.83 + g2^3*g3^6*g4^3*t^6.83 + g2^6*g4^6*t^6.83 + g2^3*g3^3*g4^6*t^6.83 + g3^6*g4^6*t^6.83 + g2^6*g3^3*g5^3*t^6.83 + g2^3*g3^6*g5^3*t^6.83 + g2^6*g4^3*g5^3*t^6.83 + 3*g2^3*g3^3*g4^3*g5^3*t^6.83 + g3^6*g4^3*g5^3*t^6.83 + g2^3*g4^6*g5^3*t^6.83 + g3^3*g4^6*g5^3*t^6.83 + g2^6*g5^6*t^6.83 + g2^3*g3^3*g5^6*t^6.83 + g3^6*g5^6*t^6.83 + g2^3*g4^3*g5^6*t^6.83 + g3^3*g4^3*g5^6*t^6.83 + g4^6*g5^6*t^6.83 + g1*g2^6*g3^3*t^7.26 + g1*g2^3*g3^6*t^7.26 + g1*g2^6*g4^3*t^7.26 + 2*g1*g2^3*g3^3*g4^3*t^7.26 + g1*g3^6*g4^3*t^7.26 + g1*g2^3*g4^6*t^7.26 + g1*g3^3*g4^6*t^7.26 + (g2^7*g3^4*g4*g5*t^7.26)/g1 + (g2^4*g3^7*g4*g5*t^7.26)/g1 + (g2^7*g3*g4^4*g5*t^7.26)/g1 + (2*g2^4*g3^4*g4^4*g5*t^7.26)/g1 + (g2*g3^7*g4^4*g5*t^7.26)/g1 + (g2^4*g3*g4^7*g5*t^7.26)/g1 + (g2*g3^4*g4^7*g5*t^7.26)/g1 + g1*g2^6*g5^3*t^7.26 + 2*g1*g2^3*g3^3*g5^3*t^7.26 + g1*g3^6*g5^3*t^7.26 + 2*g1*g2^3*g4^3*g5^3*t^7.26 + 2*g1*g3^3*g4^3*g5^3*t^7.26 + g1*g4^6*g5^3*t^7.26 + (g2^7*g3*g4*g5^4*t^7.26)/g1 + (2*g2^4*g3^4*g4*g5^4*t^7.26)/g1 + (g2*g3^7*g4*g5^4*t^7.26)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.26)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.26)/g1 + (g2*g3*g4^7*g5^4*t^7.26)/g1 + g1*g2^3*g5^6*t^7.26 + g1*g3^3*g5^6*t^7.26 + g1*g4^3*g5^6*t^7.26 + (g2^4*g3*g4*g5^7*t^7.26)/g1 + (g2*g3^4*g4*g5^7*t^7.26)/g1 + (g2*g3*g4^4*g5^7*t^7.26)/g1 - (g1*g2*t^7.29)/(g3^2*g4^2*g5^2) - (g1*g3*t^7.29)/(g2^2*g4^2*g5^2) - (g1*g4*t^7.29)/(g2^2*g3^2*g5^2) - (g2^2*t^7.29)/(g1*g3*g4*g5) - (g3^2*t^7.29)/(g1*g2*g4*g5) - (g4^2*t^7.29)/(g1*g2*g3*g5) - (g1*g5*t^7.29)/(g2^2*g3^2*g4^2) - (g5^2*t^7.29)/(g1*g2*g3*g4) + g2^6*g3^6*g4^6*g5^6*t^7.66 + g1^2*g2^6*t^7.69 + g1^2*g2^3*g3^3*t^7.69 + g1^2*g3^6*t^7.69 + g1^2*g2^3*g4^3*t^7.69 + g1^2*g3^3*g4^3*t^7.69 + g1^2*g4^6*t^7.69 + g2^7*g3*g4*g5*t^7.69 + 2*g2^4*g3^4*g4*g5*t^7.69 + g2*g3^7*g4*g5*t^7.69 + 2*g2^4*g3*g4^4*g5*t^7.69 + 2*g2*g3^4*g4^4*g5*t^7.69 + g2*g3*g4^7*g5*t^7.69 + (g2^8*g3^2*g4^2*g5^2*t^7.69)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.69)/g1^2 + (g2^2*g3^8*g4^2*g5^2*t^7.69)/g1^2 + (g2^5*g3^2*g4^5*g5^2*t^7.69)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.69)/g1^2 + (g2^2*g3^2*g4^8*g5^2*t^7.69)/g1^2 + g1^2*g2^3*g5^3*t^7.69 + g1^2*g3^3*g5^3*t^7.69 + g1^2*g4^3*g5^3*t^7.69 + 2*g2^4*g3*g4*g5^4*t^7.69 + 2*g2*g3^4*g4*g5^4*t^7.69 + 2*g2*g3*g4^4*g5^4*t^7.69 + (g2^5*g3^2*g4^2*g5^5*t^7.69)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.69)/g1^2 + (g2^2*g3^2*g4^5*g5^5*t^7.69)/g1^2 + g1^2*g5^6*t^7.69 + g2*g3*g4*g5^7*t^7.69 + (g2^2*g3^2*g4^2*g5^8*t^7.69)/g1^2 - (g2^2*t^7.72)/(g3*g4*g5^4) - (g3^2*t^7.72)/(g2*g4*g5^4) - (g4^2*t^7.72)/(g2*g3*g5^4) - (g2^2*t^7.72)/(g3*g4^4*g5) - (g3^2*t^7.72)/(g2*g4^4*g5) - (g2^2*t^7.72)/(g3^4*g4*g5) - (4*t^7.72)/(g2*g3*g4*g5) - (g3^2*t^7.72)/(g2^4*g4*g5) - (g4^2*t^7.72)/(g2*g3^4*g5) - (g4^2*t^7.72)/(g2^4*g3*g5) - (g5^2*t^7.72)/(g2*g3*g4^4) - (g5^2*t^7.72)/(g2*g3^4*g4) - (g5^2*t^7.72)/(g2^4*g3*g4) + g2^7*g3^7*g4^4*g5^4*t^8.53 + g2^7*g3^4*g4^7*g5^4*t^8.53 + g2^4*g3^7*g4^7*g5^4*t^8.53 + g2^7*g3^4*g4^4*g5^7*t^8.53 + g2^4*g3^7*g4^4*g5^7*t^8.53 + g2^4*g3^4*g4^7*g5^7*t^8.53 + (g2^8*g3^2*t^8.55)/(g4*g5) + (g2^5*g3^5*t^8.55)/(g4*g5) + (g2^2*g3^8*t^8.55)/(g4*g5) + (g2^8*g4^2*t^8.55)/(g3*g5) + (g2^5*g3^2*g4^2*t^8.55)/g5 + (g2^2*g3^5*g4^2*t^8.55)/g5 + (g3^8*g4^2*t^8.55)/(g2*g5) + (g2^5*g4^5*t^8.55)/(g3*g5) + (g2^2*g3^2*g4^5*t^8.55)/g5 + (g3^5*g4^5*t^8.55)/(g2*g5) + (g2^2*g4^8*t^8.55)/(g3*g5) + (g3^2*g4^8*t^8.55)/(g2*g5) - g1^2*g2*g3*g4*g5*t^8.55 + (g2^8*g5^2*t^8.55)/(g3*g4) + (g2^5*g3^2*g5^2*t^8.55)/g4 + (g2^2*g3^5*g5^2*t^8.55)/g4 + (g3^8*g5^2*t^8.55)/(g2*g4) + (g2^5*g4^2*g5^2*t^8.55)/g3 - 2*g2^2*g3^2*g4^2*g5^2*t^8.55 + (g3^5*g4^2*g5^2*t^8.55)/g2 + (g2^2*g4^5*g5^2*t^8.55)/g3 + (g3^2*g4^5*g5^2*t^8.55)/g2 + (g4^8*g5^2*t^8.55)/(g2*g3) - (g2^3*g3^3*g4^3*g5^3*t^8.55)/g1^2 + (g2^5*g5^5*t^8.55)/(g3*g4) + (g2^2*g3^2*g5^5*t^8.55)/g4 + (g3^5*g5^5*t^8.55)/(g2*g4) + (g2^2*g4^2*g5^5*t^8.55)/g3 + (g3^2*g4^2*g5^5*t^8.55)/g2 + (g4^5*g5^5*t^8.55)/(g2*g3) + (g2^2*g5^8*t^8.55)/(g3*g4) + (g3^2*g5^8*t^8.55)/(g2*g4) + (g4^2*g5^8*t^8.55)/(g2*g3) + t^8.58/g2^6 + t^8.58/g3^6 + t^8.58/(g2^3*g3^3) + t^8.58/g4^6 + t^8.58/(g2^3*g4^3) + t^8.58/(g3^3*g4^3) + t^8.58/g5^6 + t^8.58/(g2^3*g5^3) + t^8.58/(g3^3*g5^3) + t^8.58/(g4^3*g5^3) + g1*g2^7*g3^4*g4^4*g5^4*t^8.96 + g1*g2^4*g3^7*g4^4*g5^4*t^8.96 + g1*g2^4*g3^4*g4^7*g5^4*t^8.96 + (g2^8*g3^5*g4^5*g5^5*t^8.96)/g1 + (g2^5*g3^8*g4^5*g5^5*t^8.96)/g1 + (g2^5*g3^5*g4^8*g5^5*t^8.96)/g1 + g1*g2^4*g3^4*g4^4*g5^7*t^8.96 + (g2^5*g3^5*g4^5*g5^8*t^8.96)/g1 + (g2^9*t^8.99)/g1 + (g2^6*g3^3*t^8.99)/g1 + (g2^3*g3^6*t^8.99)/g1 + (g3^9*t^8.99)/g1 + (g2^6*g4^3*t^8.99)/g1 + (g3^6*g4^3*t^8.99)/g1 + (g2^3*g4^6*t^8.99)/g1 + (g3^3*g4^6*t^8.99)/g1 + (g4^9*t^8.99)/g1 + (g1*g2^8*t^8.99)/(g3*g4*g5) + (g1*g2^5*g3^2*t^8.99)/(g4*g5) + (g1*g2^2*g3^5*t^8.99)/(g4*g5) + (g1*g3^8*t^8.99)/(g2*g4*g5) + (g1*g2^5*g4^2*t^8.99)/(g3*g5) + (g1*g3^5*g4^2*t^8.99)/(g2*g5) + (g1*g2^2*g4^5*t^8.99)/(g3*g5) + (g1*g3^2*g4^5*t^8.99)/(g2*g5) + (g1*g4^8*t^8.99)/(g2*g3*g5) + (g1*g2^5*g5^2*t^8.99)/(g3*g4) + (g1*g3^5*g5^2*t^8.99)/(g2*g4) + (g1*g4^5*g5^2*t^8.99)/(g2*g3) + (g2^6*g5^3*t^8.99)/g1 + (g3^6*g5^3*t^8.99)/g1 + (g4^6*g5^3*t^8.99)/g1 + (g1*g2^2*g5^5*t^8.99)/(g3*g4) + (g1*g3^2*g5^5*t^8.99)/(g2*g4) + (g1*g4^2*g5^5*t^8.99)/(g2*g3) + (g2^3*g5^6*t^8.99)/g1 + (g3^3*g5^6*t^8.99)/g1 + (g4^3*g5^6*t^8.99)/g1 + (g1*g5^8*t^8.99)/(g2*g3*g4) + (g5^9*t^8.99)/g1 - t^4.72/(g2*g3*g4*g5*y) + (g2^5*g3^5*g4^2*g5^2*t^8.97)/y + (g2^5*g3^2*g4^5*g5^2*t^8.97)/y + (g2^2*g3^5*g4^5*g5^2*t^8.97)/y + (g2^5*g3^2*g4^2*g5^5*t^8.97)/y + (g2^2*g3^5*g4^2*g5^5*t^8.97)/y + (g2^2*g3^2*g4^5*g5^5*t^8.97)/y - (t^4.72*y)/(g2*g3*g4*g5) + g2^5*g3^5*g4^2*g5^2*t^8.97*y + g2^5*g3^2*g4^5*g5^2*t^8.97*y + g2^2*g3^5*g4^5*g5^2*t^8.97*y + g2^5*g3^2*g4^2*g5^5*t^8.97*y + g2^2*g3^5*g4^2*g5^5*t^8.97*y + g2^2*g3^2*g4^5*g5^5*t^8.97*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55659 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8544 | 1.0423 | 0.8198 | [X:[], M:[0.8556], q:[0.7139, 0.7139, 0.5695], qb:[0.5722, 0.5722, 0.5695], phi:[0.5722]] | t^2.57 + t^3.42 + 5*t^3.43 + 4*t^3.85 + 4*t^3.86 + t^4.28 + 4*t^5.13 + 4*t^5.14 + 3*t^5.15 + t^5.98 - 8*t^6. - t^4.72/y - t^4.72*y | detail | |
55592 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_1^2$ | 0.8364 | 0.9927 | 0.8426 | [X:[], M:[1.0], q:[0.75, 0.75, 0.625], qb:[0.625, 0.625, 0.625], phi:[0.5]] | t^3. + 6*t^3.75 + 8*t^4.12 + t^4.5 + 10*t^5.25 - 16*t^6. - t^4.5/y - t^4.5*y | detail | {a: 1713/2048, c: 2033/2048, M1: 1, q1: 3/4, q2: 3/4, q3: 5/8, qb1: 5/8, qb2: 5/8, qb3: 5/8, phi1: 1/2} |
55680 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ | 0.8691 | 1.0645 | 0.8165 | [X:[], M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] | t^2.4 + t^2.64 + t^3.35 + 4*t^3.48 + 4*t^3.83 + 4*t^3.96 + t^4.32 + t^4.79 + 4*t^5.03 + 4*t^5.16 + t^5.27 + 3*t^5.29 + t^5.75 + t^5.99 - 9*t^6. - t^4.68/y - t^4.68*y | detail | |
55681 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3\tilde{q}_1$ | 0.8008 | 0.9717 | 0.8242 | [X:[], M:[0.9333], q:[0.7333, 0.7333, 0.7333], qb:[0.7333, 0.4667, 0.4667], phi:[0.5333]] | 2*t^2.8 + 8*t^3.6 + 9*t^4.4 + 3*t^5.6 - 10*t^6. - t^4.6/y - t^4.6*y | detail | {a: 961/1200, c: 583/600, M1: 14/15, q1: 11/15, q2: 11/15, q3: 11/15, qb1: 11/15, qb2: 7/15, qb3: 7/15, phi1: 8/15} |
55690 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3^2$ | 0.8366 | 1.0194 | 0.8207 | [X:[], M:[0.8786], q:[0.7197, 0.7197, 0.7197], qb:[0.5328, 0.5328, 0.5328], phi:[0.5607]] | t^2.64 + 3*t^3.2 + 9*t^3.76 + 3*t^4.32 + 6*t^4.88 + t^5.27 + 3*t^5.83 - 12*t^6. - t^4.68/y - t^4.68*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55430 | SU2adj1nf3 | $\phi_1q_1q_2$ | 0.8434 | 1.0148 | 0.831 | [X:[], M:[], q:[0.7257, 0.7257, 0.5885], qb:[0.5885, 0.5885, 0.5885], phi:[0.5487]] | t^3.29 + 6*t^3.53 + 8*t^3.94 + t^4.35 + 10*t^5.18 - 17*t^6. - t^4.65/y - t^4.65*y | detail |