Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55767 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ 0.8895 1.1021 0.807 [X:[], M:[0.8851, 0.7999, 0.6996], q:[0.7119, 0.7306, 0.6], qb:[0.6, 0.5698, 0.5578], phi:[0.5574]] [X:[], M:[[0, 2, 2, 2, 2], [0, -3, -3, 0, 0], [-1, 0, 0, -3, 0]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_1$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ q_1q_3$, $ q_2q_3$, $ M_3^2$, $ q_1q_2$, $ M_2M_3$, $ M_1M_3$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ M_1M_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ M_1^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3q_1\tilde{q}_3$, $ M_3q_1\tilde{q}_2$ . -7 t^2.1 + t^2.4 + t^2.66 + t^3.38 + 2*t^3.47 + 2*t^3.51 + t^3.81 + t^3.85 + t^3.87 + 2*t^3.94 + 2*t^3.99 + t^4.2 + t^4.33 + t^4.5 + t^4.75 + t^4.8 + t^5.02 + 2*t^5.06 + t^5.09 + 2*t^5.15 + 2*t^5.18 + 3*t^5.27 + t^5.31 + t^5.48 + 2*t^5.57 + 2*t^5.61 + t^5.78 + t^5.91 + t^5.94 - 7*t^6. + 2*t^6.03 + 2*t^6.16 + t^6.21 + t^6.24 + t^6.27 + t^6.3 - t^6.48 + t^6.5 + 2*t^6.59 + t^6.6 + 2*t^6.65 + t^6.73 + t^6.77 + t^6.85 + 2*t^6.86 + 2*t^6.89 + t^6.9 + 3*t^6.95 + 4*t^6.98 + 3*t^7.02 + t^7.12 + t^7.15 + t^7.19 + t^7.2 - t^7.21 + t^7.23 + 2*t^7.24 + 2*t^7.28 + 4*t^7.32 + 2*t^7.35 + 5*t^7.37 + 4*t^7.41 + t^7.42 + 5*t^7.45 + 3*t^7.47 + t^7.49 + 3*t^7.5 + t^7.58 + t^7.62 - t^7.64 + t^7.65 + t^7.69 + 3*t^7.71 + t^7.73 + 2*t^7.75 - 2*t^7.76 + 2*t^7.78 + 2*t^7.8 + 2*t^7.84 + 2*t^7.86 + 3*t^7.87 + t^7.88 + 3*t^7.93 + t^7.97 + 3*t^7.98 + t^8.01 + t^8.04 - 7*t^8.1 + t^8.13 + t^8.14 + t^8.18 - t^8.23 + 2*t^8.26 + t^8.31 + t^8.34 + t^8.39 - 3*t^8.4 + t^8.44 + t^8.47 + 2*t^8.49 + 4*t^8.53 + 4*t^8.56 + 2*t^8.6 + t^8.61 + 3*t^8.62 + t^8.64 + t^8.65 + 5*t^8.69 + t^8.7 - t^8.71 + 4*t^8.75 + 4*t^8.78 + 2*t^8.82 + t^8.83 + 2*t^8.86 + 2*t^8.9 + t^8.94 + t^8.95 + 4*t^8.96 + 4*t^8.99 - t^4.67/y - t^6.77/y - t^7.07/y + t^7.5/y + t^7.75/y + t^8.06/y + t^8.27/y + t^8.48/y + (3*t^8.57)/y + (2*t^8.61)/y + t^8.78/y + t^8.87/y + (3*t^8.91)/y + t^8.94/y + t^8.96/y - t^4.67*y - t^6.77*y - t^7.07*y + t^7.5*y + t^7.75*y + t^8.06*y + t^8.27*y + t^8.48*y + 3*t^8.57*y + 2*t^8.61*y + t^8.78*y + t^8.87*y + 3*t^8.91*y + t^8.94*y + t^8.96*y t^2.1/(g1*g4^3) + t^2.4/(g2^3*g3^3) + g2^2*g3^2*g4^2*g5^2*t^2.66 + g4^3*g5^3*t^3.38 + g2^3*g5^3*t^3.47 + g3^3*g5^3*t^3.47 + g2^3*g4^3*t^3.51 + g3^3*g4^3*t^3.51 + (g2*g3*g4*g5^4*t^3.81)/g1 + (g2*g3*g4^4*g5*t^3.85)/g1 + g1*g5^3*t^3.87 + (g2^4*g3*g4*g5*t^3.94)/g1 + (g2*g3^4*g4*g5*t^3.94)/g1 + g1*g2^3*t^3.99 + g1*g3^3*t^3.99 + t^4.2/(g1^2*g4^6) + g2*g3*g4*g5*t^4.33 + t^4.5/(g1*g2^3*g3^3*g4^3) + (g2^2*g3^2*g5^2*t^4.75)/(g1*g4) + t^4.8/(g2^6*g3^6) + (g5^5*t^5.02)/(g2*g3*g4) + (2*g4^2*g5^2*t^5.06)/(g2*g3) + (g4^5*t^5.09)/(g2*g3*g5) + (g2^2*g5^2*t^5.15)/(g3*g4) + (g3^2*g5^2*t^5.15)/(g2*g4) + (g2^2*g4^2*t^5.18)/(g3*g5) + (g3^2*g4^2*t^5.18)/(g2*g5) + (g2^5*t^5.27)/(g3*g4*g5) + (g2^2*g3^2*t^5.27)/(g4*g5) + (g3^5*t^5.27)/(g2*g4*g5) + g2^4*g3^4*g4^4*g5^4*t^5.31 + (g5^3*t^5.48)/g1 + (g2^3*g5^3*t^5.57)/(g1*g4^3) + (g3^3*g5^3*t^5.57)/(g1*g4^3) + (g2^3*t^5.61)/g1 + (g3^3*t^5.61)/g1 + (g4^3*g5^3*t^5.78)/(g2^3*g3^3) + (g2*g3*g5^4*t^5.91)/(g1^2*g4^2) + (g2*g3*g4*g5*t^5.94)/g1^2 - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 + (g2^4*g3*g5*t^6.03)/(g1^2*g4^2) + (g2*g3^4*g5*t^6.03)/(g1^2*g4^2) - (g4^3*t^6.04)/g5^3 + g2^2*g3^2*g4^5*g5^5*t^6.04 - (g2^3*t^6.13)/g5^3 - (g3^3*t^6.13)/g5^3 + g2^5*g3^2*g4^2*g5^5*t^6.13 + g2^2*g3^5*g4^2*g5^5*t^6.13 + g2^5*g3^2*g4^5*g5^2*t^6.16 + g2^2*g3^5*g4^5*g5^2*t^6.16 + (g4*g5^4*t^6.21)/(g1*g2^2*g3^2) + (g4^4*g5*t^6.24)/(g1*g2^2*g3^2) + (g1*g5^3*t^6.27)/(g2^3*g3^3) + t^6.3/(g1^3*g4^9) - (g2*g3*g4*t^6.46)/(g1*g5^2) + (g2^3*g3^3*g4^3*g5^6*t^6.46)/g1 - (g1*t^6.48)/g4^3 + (g2^3*g3^3*g4^6*g5^3*t^6.5)/g1 - (g1*t^6.52)/g5^3 + g1*g2^2*g3^2*g4^2*g5^5*t^6.52 + (g2^6*g3^3*g4^3*g5^3*t^6.59)/g1 + (g2^3*g3^6*g4^3*g5^3*t^6.59)/g1 + t^6.6/(g1^2*g2^3*g3^3*g4^6) + g1*g2^5*g3^2*g4^2*g5^2*t^6.65 + g1*g2^2*g3^5*g4^2*g5^2*t^6.65 + (g4*g5*t^6.73)/(g2^2*g3^2) + g4^6*g5^6*t^6.77 + (g2^2*g3^2*g5^2*t^6.85)/(g1^2*g4^4) + g2^3*g4^3*g5^6*t^6.86 + g3^3*g4^3*g5^6*t^6.86 + g2^3*g4^6*g5^3*t^6.89 + g3^3*g4^6*g5^3*t^6.89 + t^6.9/(g1*g2^6*g3^6*g4^3) + g2^6*g5^6*t^6.95 + g2^3*g3^3*g5^6*t^6.95 + g3^6*g5^6*t^6.95 + g2^6*g4^3*g5^3*t^6.98 + 2*g2^3*g3^3*g4^3*g5^3*t^6.98 + g3^6*g4^3*g5^3*t^6.98 + g2^6*g4^6*t^7.02 + g2^3*g3^3*g4^6*t^7.02 + g3^6*g4^6*t^7.02 + (g5^5*t^7.12)/(g1*g2*g3*g4^4) + (g5^2*t^7.15)/(g1*g2*g3*g4) + (g2*g3*g4^4*g5^7*t^7.19)/g1 + t^7.2/(g2^9*g3^9) - (g1*g5*t^7.21)/(g2^2*g3^2*g4^2) + (g2*g3*g4^7*g5^4*t^7.23)/g1 + (g2^2*g5^2*t^7.24)/(g1*g3*g4^4) + (g3^2*g5^2*t^7.24)/(g1*g2*g4^4) - (g1*g4*t^7.25)/(g2^2*g3^2*g5^2) + g1*g4^3*g5^6*t^7.25 + (g2^4*g3*g4*g5^7*t^7.28)/g1 + (g2*g3^4*g4*g5^7*t^7.28)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.32)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.32)/g1 - (g1*g2*t^7.34)/(g3^2*g4^2*g5^2) - (g1*g3*t^7.34)/(g2^2*g4^2*g5^2) + g1*g2^3*g5^6*t^7.34 + g1*g3^3*g5^6*t^7.34 + (g2^4*g3*g4^7*g5*t^7.35)/g1 + (g2*g3^4*g4^7*g5*t^7.35)/g1 + (g2^5*t^7.37)/(g1*g3*g4^4*g5) + (g2^2*g3^2*t^7.37)/(g1*g4^4*g5) + (g3^5*t^7.37)/(g1*g2*g4^4*g5) + g1*g2^3*g4^3*g5^3*t^7.37 + g1*g3^3*g4^3*g5^3*t^7.37 + (g2^7*g3*g4*g5^4*t^7.41)/g1 + (2*g2^4*g3^4*g4*g5^4*t^7.41)/g1 + (g2*g3^7*g4*g5^4*t^7.41)/g1 + (g5^5*t^7.42)/(g2^4*g3^4*g4) + (g2^7*g3*g4^4*g5*t^7.45)/g1 + (g2^4*g3^4*g4^4*g5*t^7.45)/g1 + (g2*g3^7*g4^4*g5*t^7.45)/g1 + (2*g4^2*g5^2*t^7.45)/(g2^4*g3^4) + g1*g2^6*g5^3*t^7.47 + g1*g2^3*g3^3*g5^3*t^7.47 + g1*g3^6*g5^3*t^7.47 + (g4^5*t^7.49)/(g2^4*g3^4*g5) + g1*g2^6*g4^3*t^7.5 + g1*g2^3*g3^3*g4^3*t^7.5 + g1*g3^6*g4^3*t^7.5 + (g5^3*t^7.58)/(g1^2*g4^3) + (g2^2*g3^2*g4^2*g5^8*t^7.62)/g1^2 - (g5^2*t^7.64)/(g2*g3*g4^4) + (g2^2*g3^2*g4^5*g5^5*t^7.65)/g1^2 - (3*t^7.67)/(g2*g3*g4*g5) + (g2^3*g5^3*t^7.67)/(g1^2*g4^6) + (g3^3*g5^3*t^7.67)/(g1^2*g4^6) + g2*g3*g4*g5^7*t^7.67 + (g2^2*g3^2*g4^8*g5^2*t^7.69)/g1^2 + (g2^3*t^7.71)/(g1^2*g4^3) + (g3^3*t^7.71)/(g1^2*g4^3) - (g4^2*t^7.71)/(g2*g3*g5^4) + 2*g2*g3*g4^4*g5^4*t^7.71 + g1^2*g5^6*t^7.73 + (g2^5*g3^2*g4^2*g5^5*t^7.75)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.75)/g1^2 - (g2^2*t^7.76)/(g3*g4^4*g5) - (g3^2*t^7.76)/(g2*g4^4*g5) + (g2^5*g3^2*g4^5*g5^2*t^7.78)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.78)/g1^2 - (g2^2*t^7.8)/(g3*g4*g5^4) - (g3^2*t^7.8)/(g2*g4*g5^4) + 2*g2^4*g3*g4*g5^4*t^7.8 + 2*g2*g3^4*g4*g5^4*t^7.8 + g2^4*g3*g4^4*g5*t^7.84 + g2*g3^4*g4^4*g5*t^7.84 + g1^2*g2^3*g5^3*t^7.86 + g1^2*g3^3*g5^3*t^7.86 + (g2^8*g3^2*g4^2*g5^2*t^7.87)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.87)/g1^2 + (g2^2*g3^8*g4^2*g5^2*t^7.87)/g1^2 + (g5^3*t^7.88)/(g1*g2^3*g3^3) + g2^7*g3*g4*g5*t^7.93 + g2^4*g3^4*g4*g5*t^7.93 + g2*g3^7*g4*g5*t^7.93 + g2^6*g3^6*g4^6*g5^6*t^7.97 + g1^2*g2^6*t^7.98 + g1^2*g2^3*g3^3*t^7.98 + g1^2*g3^6*t^7.98 + (g2*g3*g5^4*t^8.01)/(g1^3*g4^5) + (g2*g3*g5*t^8.04)/(g1^3*g4^2) - (5*t^8.1)/(g1*g4^3) - (g2^3*t^8.1)/(g1*g3^3*g4^3) - (g3^3*t^8.1)/(g1*g2^3*g4^3) - t^8.13/(g1*g5^3) + (g2^4*g3*g5*t^8.13)/(g1^3*g4^5) + (g2*g3^4*g5*t^8.13)/(g1^3*g4^5) + (g2^2*g3^2*g4^2*g5^5*t^8.14)/g1 + (g4^3*g5^3*t^8.18)/(g2^6*g3^6) - (g2^3*t^8.23)/(g1*g4^3*g5^3) - (g3^3*t^8.23)/(g1*g4^3*g5^3) - g1*g2*g3*g4^4*g5*t^8.23 + (g2^5*g3^2*g5^5*t^8.23)/(g1*g4) + (g2^2*g3^5*g5^5*t^8.23)/(g1*g4) + (g2^5*g3^2*g4^2*g5^2*t^8.26)/g1 + (g2^2*g3^5*g4^2*g5^2*t^8.26)/g1 + (g5^4*t^8.31)/(g1^2*g2^2*g3^2*g4^2) + (g4*g5*t^8.34)/(g1^2*g2^2*g3^2) + t^8.39/(g1^4*g4^12) - (4*t^8.4)/(g2^3*g3^3) + (g4^2*g5^8*t^8.4)/(g2*g3) - (g4^3*t^8.44)/(g2^3*g3^3*g5^3) + (2*g4^5*g5^5*t^8.44)/(g2*g3) + (g4^8*g5^2*t^8.47)/(g2*g3) + (g2^2*g5^8*t^8.49)/(g3*g4) + (g3^2*g5^8*t^8.49)/(g2*g4) + (2*g2^2*g4^2*g5^5*t^8.53)/g3 + (2*g3^2*g4^2*g5^5*t^8.53)/g2 - (g2*g3*t^8.56)/(g1^2*g4^2*g5^2) + (2*g2^2*g4^5*g5^2*t^8.56)/g3 + (2*g3^2*g4^5*g5^2*t^8.56)/g2 + (g2^3*g3^3*g5^6*t^8.56)/g1^2 + (g2^2*g4^8*t^8.6)/(g3*g5) + (g3^2*g4^8*t^8.6)/(g2*g5) + (g4*g5^4*t^8.61)/(g1*g2^5*g3^5) + (g2^5*g5^5*t^8.62)/(g3*g4) + (g2^2*g3^2*g5^5*t^8.62)/g4 + (g3^5*g5^5*t^8.62)/(g2*g4) + (g4^4*g5*t^8.64)/(g1*g2^5*g3^5) + t^8.65/g5^6 + (g2^5*g4^2*g5^2*t^8.66)/g3 - 3*g2^2*g3^2*g4^2*g5^2*t^8.66 + (g3^5*g4^2*g5^2*t^8.66)/g2 + (g1*g5^3*t^8.66)/(g2^6*g3^6) + (g2^5*g4^5*t^8.69)/(g3*g5) + (g3^5*g4^5*t^8.69)/(g2*g5) + (g2^6*g3^3*g5^3*t^8.69)/g1^2 + (g2^3*g3^6*g5^3*t^8.69)/g1^2 + g2^4*g3^4*g4^7*g5^7*t^8.69 + t^8.7/(g1^3*g2^3*g3^3*g4^9) - g1^2*g2*g3*g4*g5*t^8.71 + (g2^8*g5^2*t^8.75)/(g3*g4) + (g2^5*g3^2*g5^2*t^8.75)/g4 + (g2^2*g3^5*g5^2*t^8.75)/g4 + (g3^8*g5^2*t^8.75)/(g2*g4) + (g2^8*g4^2*t^8.78)/(g3*g5) + (g3^8*g4^2*t^8.78)/(g2*g5) + g2^7*g3^4*g4^4*g5^7*t^8.78 + g2^4*g3^7*g4^4*g5^7*t^8.78 + g2^7*g3^4*g4^7*g5^4*t^8.82 + g2^4*g3^7*g4^7*g5^4*t^8.82 + (g5^9*t^8.83)/g1 - (g4*t^8.86)/(g1*g2^2*g3^2*g5^2) + (3*g4^3*g5^6*t^8.86)/g1 - (g1*t^8.88)/(g2^3*g3^3*g4^3) + (g1*g5^8*t^8.88)/(g2*g3*g4) + (2*g4^6*g5^3*t^8.9)/g1 - (g1*t^8.92)/(g2^3*g3^3*g5^3) + (g1*g4^2*g5^5*t^8.92)/(g2*g3) + (g4^9*t^8.94)/g1 + (g2^2*g3^2*g5^2*t^8.95)/(g1^3*g4^7) + (2*g2^3*g5^6*t^8.96)/g1 + (2*g3^3*g5^6*t^8.96)/g1 + (2*g2^3*g4^3*g5^3*t^8.99)/g1 + (2*g3^3*g4^3*g5^3*t^8.99)/g1 - t^4.67/(g2*g3*g4*g5*y) - t^6.77/(g1*g2*g3*g4^4*g5*y) - t^7.07/(g2^4*g3^4*g4*g5*y) + t^7.5/(g1*g2^3*g3^3*g4^3*y) + (g2^2*g3^2*g5^2*t^7.75)/(g1*g4*y) + (g4^2*g5^2*t^8.06)/(g2*g3*y) + (g2^2*g3^2*t^8.27)/(g4*g5*y) + (g5^3*t^8.48)/(g1*y) + (g1*g4^2*t^8.57)/(g2*g3*g5*y) + (g2^3*g5^3*t^8.57)/(g1*g4^3*y) + (g3^3*g5^3*t^8.57)/(g1*g4^3*y) + (g2^3*t^8.61)/(g1*y) + (g3^3*t^8.61)/(g1*y) + (g4^3*g5^3*t^8.78)/(g2^3*g3^3*y) - t^8.87/(g1^2*g2*g3*g4^7*g5*y) + (g5^3*t^8.87)/(g2^3*y) + (g5^3*t^8.87)/(g3^3*y) + (g4^3*t^8.91)/(g2^3*y) + (g4^3*t^8.91)/(g3^3*y) + (g2*g3*g5^4*t^8.91)/(g1^2*g4^2*y) + (g2*g3*g4*g5*t^8.94)/(g1^2*y) + (g5^3*t^8.96)/(g4^3*y) - (t^4.67*y)/(g2*g3*g4*g5) - (t^6.77*y)/(g1*g2*g3*g4^4*g5) - (t^7.07*y)/(g2^4*g3^4*g4*g5) + (t^7.5*y)/(g1*g2^3*g3^3*g4^3) + (g2^2*g3^2*g5^2*t^7.75*y)/(g1*g4) + (g4^2*g5^2*t^8.06*y)/(g2*g3) + (g2^2*g3^2*t^8.27*y)/(g4*g5) + (g5^3*t^8.48*y)/g1 + (g1*g4^2*t^8.57*y)/(g2*g3*g5) + (g2^3*g5^3*t^8.57*y)/(g1*g4^3) + (g3^3*g5^3*t^8.57*y)/(g1*g4^3) + (g2^3*t^8.61*y)/g1 + (g3^3*t^8.61*y)/g1 + (g4^3*g5^3*t^8.78*y)/(g2^3*g3^3) - (t^8.87*y)/(g1^2*g2*g3*g4^7*g5) + (g5^3*t^8.87*y)/g2^3 + (g5^3*t^8.87*y)/g3^3 + (g4^3*t^8.91*y)/g2^3 + (g4^3*t^8.91*y)/g3^3 + (g2*g3*g5^4*t^8.91*y)/(g1^2*g4^2) + (g2*g3*g4*g5*t^8.94*y)/g1^2 + (g5^3*t^8.96*y)/g4^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55680 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_2q_3\tilde{q}_1$ 0.8691 1.0645 0.8165 [X:[], M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] t^2.4 + t^2.64 + t^3.35 + 4*t^3.48 + 4*t^3.83 + 4*t^3.96 + t^4.32 + t^4.79 + 4*t^5.03 + 4*t^5.16 + t^5.27 + 3*t^5.29 + t^5.75 + t^5.99 - 9*t^6. - t^4.68/y - t^4.68*y detail