Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55767 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ | 0.8895 | 1.1021 | 0.807 | [M:[0.8851, 0.7999, 0.6996], q:[0.7119, 0.7306, 0.6], qb:[0.6, 0.5698, 0.5578], phi:[0.5574]] | [M:[[0, 2, 2, 2, 2], [0, -3, -3, 0, 0], [-1, 0, 0, -3, 0]], q:[[-1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}q_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}q_{3}\tilde{q}_{3}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{3}q_{3}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}q_{1}\tilde{q}_{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}$ | -7 | t^2.099 + t^2.4 + t^2.655 + t^3.383 + 2*t^3.474 + 2*t^3.509 + t^3.809 + t^3.845 + t^3.865 + 2*t^3.936 + 2*t^3.992 + t^4.197 + t^4.328 + t^4.498 + t^4.754 + t^4.8 + t^5.019 + 2*t^5.055 + t^5.091 + 2*t^5.146 + 2*t^5.182 + 3*t^5.273 + t^5.311 + t^5.482 + 2*t^5.572 + 2*t^5.608 + t^5.783 + t^5.908 + t^5.944 - 7*t^6. + 2*t^6.035 - t^6.036 + t^6.038 - 2*t^6.127 + 2*t^6.129 + 2*t^6.165 + t^6.209 + t^6.245 + t^6.265 + t^6.296 - t^6.462 + t^6.465 - t^6.483 + t^6.501 - t^6.518 + t^6.521 + 2*t^6.591 + t^6.597 + 2*t^6.647 + t^6.727 + t^6.766 + t^6.853 + 2*t^6.857 + 2*t^6.892 + t^6.898 + 3*t^6.947 + 4*t^6.983 + 3*t^7.019 + t^7.118 + t^7.154 + t^7.192 + t^7.199 - t^7.21 + t^7.228 + 2*t^7.245 - t^7.246 + t^7.248 + 2*t^7.283 + 4*t^7.319 - 2*t^7.337 + 2*t^7.339 + 2*t^7.355 + 3*t^7.371 + 2*t^7.375 + 4*t^7.41 + t^7.419 + 3*t^7.445 + 2*t^7.455 + 3*t^7.466 + t^7.491 + 3*t^7.502 + t^7.58 + t^7.619 - t^7.636 + t^7.654 + 2*t^7.671 - 3*t^7.672 + t^7.675 + t^7.69 + 2*t^7.707 - t^7.708 + 2*t^7.711 + t^7.731 + 2*t^7.745 - 2*t^7.763 + 2*t^7.781 - 2*t^7.799 + 4*t^7.801 + 2*t^7.837 + 2*t^7.857 + 3*t^7.872 + t^7.881 + 3*t^7.928 + t^7.966 + 3*t^7.984 + t^8.007 + t^8.043 - 7*t^8.099 + 2*t^8.133 - t^8.135 + t^8.137 + t^8.182 - 2*t^8.225 + 2*t^8.228 - t^8.229 + 2*t^8.264 + t^8.308 + t^8.344 + t^8.395 - 4*t^8.4 + t^8.402 - t^8.436 + 2*t^8.438 + t^8.474 + 2*t^8.493 + 4*t^8.529 - t^8.561 + t^8.563 + 4*t^8.565 + 2*t^8.601 + t^8.609 + 3*t^8.62 + t^8.645 + t^8.653 - t^8.655 + t^8.665 + 2*t^8.69 + 2*t^8.691 + t^8.694 + t^8.696 - t^8.712 + 4*t^8.746 + 2*t^8.782 + 2*t^8.784 + 2*t^8.82 + t^8.829 - t^8.862 + 3*t^8.864 - t^8.882 + t^8.885 + 2*t^8.9 - t^8.918 + t^8.921 + t^8.936 + t^8.952 + 4*t^8.955 + 4*t^8.991 + t^8.997 - t^4.672/y - t^6.771/y - t^7.072/y + t^7.498/y + t^7.754/y + t^8.055/y + t^8.273/y + t^8.482/y + (2*t^8.572)/y + t^8.574/y + (2*t^8.608)/y + t^8.783/y - t^8.87/y + (2*t^8.873)/y + t^8.908/y + (2*t^8.909)/y + t^8.944/y + t^8.964/y - t^4.672*y - t^6.771*y - t^7.072*y + t^7.498*y + t^7.754*y + t^8.055*y + t^8.273*y + t^8.482*y + 2*t^8.572*y + t^8.574*y + 2*t^8.608*y + t^8.783*y - t^8.87*y + 2*t^8.873*y + t^8.908*y + 2*t^8.909*y + t^8.944*y + t^8.964*y | t^2.099/(g1*g4^3) + t^2.4/(g2^3*g3^3) + g2^2*g3^2*g4^2*g5^2*t^2.655 + g4^3*g5^3*t^3.383 + g2^3*g5^3*t^3.474 + g3^3*g5^3*t^3.474 + g2^3*g4^3*t^3.509 + g3^3*g4^3*t^3.509 + (g2*g3*g4*g5^4*t^3.809)/g1 + (g2*g3*g4^4*g5*t^3.845)/g1 + g1*g5^3*t^3.865 + (g2^4*g3*g4*g5*t^3.936)/g1 + (g2*g3^4*g4*g5*t^3.936)/g1 + g1*g2^3*t^3.992 + g1*g3^3*t^3.992 + t^4.197/(g1^2*g4^6) + g2*g3*g4*g5*t^4.328 + t^4.498/(g1*g2^3*g3^3*g4^3) + (g2^2*g3^2*g5^2*t^4.754)/(g1*g4) + t^4.8/(g2^6*g3^6) + (g5^5*t^5.019)/(g2*g3*g4) + (2*g4^2*g5^2*t^5.055)/(g2*g3) + (g4^5*t^5.091)/(g2*g3*g5) + (g2^2*g5^2*t^5.146)/(g3*g4) + (g3^2*g5^2*t^5.146)/(g2*g4) + (g2^2*g4^2*t^5.182)/(g3*g5) + (g3^2*g4^2*t^5.182)/(g2*g5) + (g2^5*t^5.273)/(g3*g4*g5) + (g2^2*g3^2*t^5.273)/(g4*g5) + (g3^5*t^5.273)/(g2*g4*g5) + g2^4*g3^4*g4^4*g5^4*t^5.311 + (g5^3*t^5.482)/g1 + (g2^3*g5^3*t^5.572)/(g1*g4^3) + (g3^3*g5^3*t^5.572)/(g1*g4^3) + (g2^3*t^5.608)/g1 + (g3^3*t^5.608)/g1 + (g4^3*g5^3*t^5.783)/(g2^3*g3^3) + (g2*g3*g5^4*t^5.908)/(g1^2*g4^2) + (g2*g3*g4*g5*t^5.944)/g1^2 - 5*t^6. - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g2^3 + (g2^4*g3*g5*t^6.035)/(g1^2*g4^2) + (g2*g3^4*g5*t^6.035)/(g1^2*g4^2) - (g4^3*t^6.036)/g5^3 + g2^2*g3^2*g4^5*g5^5*t^6.038 - (g2^3*t^6.127)/g5^3 - (g3^3*t^6.127)/g5^3 + g2^5*g3^2*g4^2*g5^5*t^6.129 + g2^2*g3^5*g4^2*g5^5*t^6.129 + g2^5*g3^2*g4^5*g5^2*t^6.165 + g2^2*g3^5*g4^5*g5^2*t^6.165 + (g4*g5^4*t^6.209)/(g1*g2^2*g3^2) + (g4^4*g5*t^6.245)/(g1*g2^2*g3^2) + (g1*g5^3*t^6.265)/(g2^3*g3^3) + t^6.296/(g1^3*g4^9) - (g2*g3*g4*t^6.462)/(g1*g5^2) + (g2^3*g3^3*g4^3*g5^6*t^6.465)/g1 - (g1*t^6.483)/g4^3 + (g2^3*g3^3*g4^6*g5^3*t^6.501)/g1 - (g1*t^6.518)/g5^3 + g1*g2^2*g3^2*g4^2*g5^5*t^6.521 + (g2^6*g3^3*g4^3*g5^3*t^6.591)/g1 + (g2^3*g3^6*g4^3*g5^3*t^6.591)/g1 + t^6.597/(g1^2*g2^3*g3^3*g4^6) + g1*g2^5*g3^2*g4^2*g5^2*t^6.647 + g1*g2^2*g3^5*g4^2*g5^2*t^6.647 + (g4*g5*t^6.727)/(g2^2*g3^2) + g4^6*g5^6*t^6.766 + (g2^2*g3^2*g5^2*t^6.853)/(g1^2*g4^4) + g2^3*g4^3*g5^6*t^6.857 + g3^3*g4^3*g5^6*t^6.857 + g2^3*g4^6*g5^3*t^6.892 + g3^3*g4^6*g5^3*t^6.892 + t^6.898/(g1*g2^6*g3^6*g4^3) + g2^6*g5^6*t^6.947 + g2^3*g3^3*g5^6*t^6.947 + g3^6*g5^6*t^6.947 + g2^6*g4^3*g5^3*t^6.983 + 2*g2^3*g3^3*g4^3*g5^3*t^6.983 + g3^6*g4^3*g5^3*t^6.983 + g2^6*g4^6*t^7.019 + g2^3*g3^3*g4^6*t^7.019 + g3^6*g4^6*t^7.019 + (g5^5*t^7.118)/(g1*g2*g3*g4^4) + (g5^2*t^7.154)/(g1*g2*g3*g4) + (g2*g3*g4^4*g5^7*t^7.192)/g1 + t^7.199/(g2^9*g3^9) - (g1*g5*t^7.21)/(g2^2*g3^2*g4^2) + (g2*g3*g4^7*g5^4*t^7.228)/g1 + (g2^2*g5^2*t^7.245)/(g1*g3*g4^4) + (g3^2*g5^2*t^7.245)/(g1*g2*g4^4) - (g1*g4*t^7.246)/(g2^2*g3^2*g5^2) + g1*g4^3*g5^6*t^7.248 + (g2^4*g3*g4*g5^7*t^7.283)/g1 + (g2*g3^4*g4*g5^7*t^7.283)/g1 + (2*g2^4*g3*g4^4*g5^4*t^7.319)/g1 + (2*g2*g3^4*g4^4*g5^4*t^7.319)/g1 - (g1*g2*t^7.337)/(g3^2*g4^2*g5^2) - (g1*g3*t^7.337)/(g2^2*g4^2*g5^2) + g1*g2^3*g5^6*t^7.339 + g1*g3^3*g5^6*t^7.339 + (g2^4*g3*g4^7*g5*t^7.355)/g1 + (g2*g3^4*g4^7*g5*t^7.355)/g1 + (g2^5*t^7.371)/(g1*g3*g4^4*g5) + (g2^2*g3^2*t^7.371)/(g1*g4^4*g5) + (g3^5*t^7.371)/(g1*g2*g4^4*g5) + g1*g2^3*g4^3*g5^3*t^7.375 + g1*g3^3*g4^3*g5^3*t^7.375 + (g2^7*g3*g4*g5^4*t^7.41)/g1 + (2*g2^4*g3^4*g4*g5^4*t^7.41)/g1 + (g2*g3^7*g4*g5^4*t^7.41)/g1 + (g5^5*t^7.419)/(g2^4*g3^4*g4) + (g2^7*g3*g4^4*g5*t^7.445)/g1 + (g2^4*g3^4*g4^4*g5*t^7.445)/g1 + (g2*g3^7*g4^4*g5*t^7.445)/g1 + (2*g4^2*g5^2*t^7.455)/(g2^4*g3^4) + g1*g2^6*g5^3*t^7.466 + g1*g2^3*g3^3*g5^3*t^7.466 + g1*g3^6*g5^3*t^7.466 + (g4^5*t^7.491)/(g2^4*g3^4*g5) + g1*g2^6*g4^3*t^7.502 + g1*g2^3*g3^3*g4^3*t^7.502 + g1*g3^6*g4^3*t^7.502 + (g5^3*t^7.58)/(g1^2*g4^3) + (g2^2*g3^2*g4^2*g5^8*t^7.619)/g1^2 - (g5^2*t^7.636)/(g2*g3*g4^4) + (g2^2*g3^2*g4^5*g5^5*t^7.654)/g1^2 + (g2^3*g5^3*t^7.671)/(g1^2*g4^6) + (g3^3*g5^3*t^7.671)/(g1^2*g4^6) - (3*t^7.672)/(g2*g3*g4*g5) + g2*g3*g4*g5^7*t^7.675 + (g2^2*g3^2*g4^8*g5^2*t^7.69)/g1^2 + (g2^3*t^7.707)/(g1^2*g4^3) + (g3^3*t^7.707)/(g1^2*g4^3) - (g4^2*t^7.708)/(g2*g3*g5^4) + 2*g2*g3*g4^4*g5^4*t^7.711 + g1^2*g5^6*t^7.731 + (g2^5*g3^2*g4^2*g5^5*t^7.745)/g1^2 + (g2^2*g3^5*g4^2*g5^5*t^7.745)/g1^2 - (g2^2*t^7.763)/(g3*g4^4*g5) - (g3^2*t^7.763)/(g2*g4^4*g5) + (g2^5*g3^2*g4^5*g5^2*t^7.781)/g1^2 + (g2^2*g3^5*g4^5*g5^2*t^7.781)/g1^2 - (g2^2*t^7.799)/(g3*g4*g5^4) - (g3^2*t^7.799)/(g2*g4*g5^4) + 2*g2^4*g3*g4*g5^4*t^7.801 + 2*g2*g3^4*g4*g5^4*t^7.801 + g2^4*g3*g4^4*g5*t^7.837 + g2*g3^4*g4^4*g5*t^7.837 + g1^2*g2^3*g5^3*t^7.857 + g1^2*g3^3*g5^3*t^7.857 + (g2^8*g3^2*g4^2*g5^2*t^7.872)/g1^2 + (g2^5*g3^5*g4^2*g5^2*t^7.872)/g1^2 + (g2^2*g3^8*g4^2*g5^2*t^7.872)/g1^2 + (g5^3*t^7.881)/(g1*g2^3*g3^3) + g2^7*g3*g4*g5*t^7.928 + g2^4*g3^4*g4*g5*t^7.928 + g2*g3^7*g4*g5*t^7.928 + g2^6*g3^6*g4^6*g5^6*t^7.966 + g1^2*g2^6*t^7.984 + g1^2*g2^3*g3^3*t^7.984 + g1^2*g3^6*t^7.984 + (g2*g3*g5^4*t^8.007)/(g1^3*g4^5) + (g2*g3*g5*t^8.043)/(g1^3*g4^2) - (5*t^8.099)/(g1*g4^3) - (g2^3*t^8.099)/(g1*g3^3*g4^3) - (g3^3*t^8.099)/(g1*g2^3*g4^3) + (g2^4*g3*g5*t^8.133)/(g1^3*g4^5) + (g2*g3^4*g5*t^8.133)/(g1^3*g4^5) - t^8.135/(g1*g5^3) + (g2^2*g3^2*g4^2*g5^5*t^8.137)/g1 + (g4^3*g5^3*t^8.182)/(g2^6*g3^6) - (g2^3*t^8.225)/(g1*g4^3*g5^3) - (g3^3*t^8.225)/(g1*g4^3*g5^3) + (g2^5*g3^2*g5^5*t^8.228)/(g1*g4) + (g2^2*g3^5*g5^5*t^8.228)/(g1*g4) - g1*g2*g3*g4^4*g5*t^8.229 + (g2^5*g3^2*g4^2*g5^2*t^8.264)/g1 + (g2^2*g3^5*g4^2*g5^2*t^8.264)/g1 + (g5^4*t^8.308)/(g1^2*g2^2*g3^2*g4^2) + (g4*g5*t^8.344)/(g1^2*g2^2*g3^2) + t^8.395/(g1^4*g4^12) - (4*t^8.4)/(g2^3*g3^3) + (g4^2*g5^8*t^8.402)/(g2*g3) - (g4^3*t^8.436)/(g2^3*g3^3*g5^3) + (2*g4^5*g5^5*t^8.438)/(g2*g3) + (g4^8*g5^2*t^8.474)/(g2*g3) + (g2^2*g5^8*t^8.493)/(g3*g4) + (g3^2*g5^8*t^8.493)/(g2*g4) + (2*g2^2*g4^2*g5^5*t^8.529)/g3 + (2*g3^2*g4^2*g5^5*t^8.529)/g2 - (g2*g3*t^8.561)/(g1^2*g4^2*g5^2) + (g2^3*g3^3*g5^6*t^8.563)/g1^2 + (2*g2^2*g4^5*g5^2*t^8.565)/g3 + (2*g3^2*g4^5*g5^2*t^8.565)/g2 + (g2^2*g4^8*t^8.601)/(g3*g5) + (g3^2*g4^8*t^8.601)/(g2*g5) + (g4*g5^4*t^8.609)/(g1*g2^5*g3^5) + (g2^5*g5^5*t^8.62)/(g3*g4) + (g2^2*g3^2*g5^5*t^8.62)/g4 + (g3^5*g5^5*t^8.62)/(g2*g4) + (g4^4*g5*t^8.645)/(g1*g2^5*g3^5) + t^8.653/g5^6 + (g2^5*g4^2*g5^2*t^8.655)/g3 - 3*g2^2*g3^2*g4^2*g5^2*t^8.655 + (g3^5*g4^2*g5^2*t^8.655)/g2 + (g1*g5^3*t^8.665)/(g2^6*g3^6) + (g2^6*g3^3*g5^3*t^8.69)/g1^2 + (g2^3*g3^6*g5^3*t^8.69)/g1^2 + (g2^5*g4^5*t^8.691)/(g3*g5) + (g3^5*g4^5*t^8.691)/(g2*g5) + g2^4*g3^4*g4^7*g5^7*t^8.694 + t^8.696/(g1^3*g2^3*g3^3*g4^9) - g1^2*g2*g3*g4*g5*t^8.712 + (g2^8*g5^2*t^8.746)/(g3*g4) + (g2^5*g3^2*g5^2*t^8.746)/g4 + (g2^2*g3^5*g5^2*t^8.746)/g4 + (g3^8*g5^2*t^8.746)/(g2*g4) + (g2^8*g4^2*t^8.782)/(g3*g5) + (g3^8*g4^2*t^8.782)/(g2*g5) + g2^7*g3^4*g4^4*g5^7*t^8.784 + g2^4*g3^7*g4^4*g5^7*t^8.784 + g2^7*g3^4*g4^7*g5^4*t^8.82 + g2^4*g3^7*g4^7*g5^4*t^8.82 + (g5^9*t^8.829)/g1 - (g4*t^8.862)/(g1*g2^2*g3^2*g5^2) + (3*g4^3*g5^6*t^8.864)/g1 - (g1*t^8.882)/(g2^3*g3^3*g4^3) + (g1*g5^8*t^8.885)/(g2*g3*g4) + (2*g4^6*g5^3*t^8.9)/g1 - (g1*t^8.918)/(g2^3*g3^3*g5^3) + (g1*g4^2*g5^5*t^8.921)/(g2*g3) + (g4^9*t^8.936)/g1 + (g2^2*g3^2*g5^2*t^8.952)/(g1^3*g4^7) + (2*g2^3*g5^6*t^8.955)/g1 + (2*g3^3*g5^6*t^8.955)/g1 + (2*g2^3*g4^3*g5^3*t^8.991)/g1 + (2*g3^3*g4^3*g5^3*t^8.991)/g1 + t^8.997/(g1^2*g2^6*g3^6*g4^6) - t^4.672/(g2*g3*g4*g5*y) - t^6.771/(g1*g2*g3*g4^4*g5*y) - t^7.072/(g2^4*g3^4*g4*g5*y) + t^7.498/(g1*g2^3*g3^3*g4^3*y) + (g2^2*g3^2*g5^2*t^7.754)/(g1*g4*y) + (g4^2*g5^2*t^8.055)/(g2*g3*y) + (g2^2*g3^2*t^8.273)/(g4*g5*y) + (g5^3*t^8.482)/(g1*y) + (g2^3*g5^3*t^8.572)/(g1*g4^3*y) + (g3^3*g5^3*t^8.572)/(g1*g4^3*y) + (g1*g4^2*t^8.574)/(g2*g3*g5*y) + (g2^3*t^8.608)/(g1*y) + (g3^3*t^8.608)/(g1*y) + (g4^3*g5^3*t^8.783)/(g2^3*g3^3*y) - t^8.87/(g1^2*g2*g3*g4^7*g5*y) + (g5^3*t^8.873)/(g2^3*y) + (g5^3*t^8.873)/(g3^3*y) + (g2*g3*g5^4*t^8.908)/(g1^2*g4^2*y) + (g4^3*t^8.909)/(g2^3*y) + (g4^3*t^8.909)/(g3^3*y) + (g2*g3*g4*g5*t^8.944)/(g1^2*y) + (g5^3*t^8.964)/(g4^3*y) - (t^4.672*y)/(g2*g3*g4*g5) - (t^6.771*y)/(g1*g2*g3*g4^4*g5) - (t^7.072*y)/(g2^4*g3^4*g4*g5) + (t^7.498*y)/(g1*g2^3*g3^3*g4^3) + (g2^2*g3^2*g5^2*t^7.754*y)/(g1*g4) + (g4^2*g5^2*t^8.055*y)/(g2*g3) + (g2^2*g3^2*t^8.273*y)/(g4*g5) + (g5^3*t^8.482*y)/g1 + (g2^3*g5^3*t^8.572*y)/(g1*g4^3) + (g3^3*g5^3*t^8.572*y)/(g1*g4^3) + (g1*g4^2*t^8.574*y)/(g2*g3*g5) + (g2^3*t^8.608*y)/g1 + (g3^3*t^8.608*y)/g1 + (g4^3*g5^3*t^8.783*y)/(g2^3*g3^3) - (t^8.87*y)/(g1^2*g2*g3*g4^7*g5) + (g5^3*t^8.873*y)/g2^3 + (g5^3*t^8.873*y)/g3^3 + (g2*g3*g5^4*t^8.908*y)/(g1^2*g4^2) + (g4^3*t^8.909*y)/g2^3 + (g4^3*t^8.909*y)/g3^3 + (g2*g3*g4*g5*t^8.944*y)/g1^2 + (g5^3*t^8.964*y)/g4^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55680 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ | 0.8691 | 1.0645 | 0.8165 | [M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] | t^2.397 + t^2.636 + t^3.351 + 4*t^3.477 + 4*t^3.834 + 4*t^3.96 + t^4.318 + t^4.794 + 4*t^5.033 + 4*t^5.159 + t^5.271 + 3*t^5.285 + t^5.748 + t^5.986 - 9*t^6. - t^4.682/y - t^4.682*y | detail |