Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55733 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.8457 1.0282 0.8225 [M:[0.9176, 0.868], q:[0.7294, 0.7294, 0.566], qb:[0.566, 0.7294, 0.515], phi:[0.5412]] [M:[[0, 0, 4, 0], [0, 0, -5, 1]], q:[[-1, 0, 2, 0], [1, 0, 0, 0], [0, -1, 5, -1]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, -2, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}q_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}q_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$ ${}$ -8 t^2.604 + t^2.753 + 2*t^3.243 + 3*t^3.733 + 6*t^3.886 + 3*t^4.376 + t^4.714 + 2*t^4.867 + 3*t^5.02 + t^5.208 + t^5.357 + t^5.506 + 2*t^5.996 - 8*t^6. - 2*t^6.153 + 3*t^6.337 + 6*t^6.486 + 6*t^6.639 - 3*t^6.643 + 6*t^6.976 + 12*t^7.129 - 6*t^7.133 + t^7.318 + 6*t^7.467 + 18*t^7.619 - 4*t^7.624 + 18*t^7.772 - 2*t^7.777 + t^7.812 + 2*t^7.957 + t^7.961 + 9*t^8.11 + t^8.258 + 14*t^8.263 + 3*t^8.447 + 6*t^8.6 - 5*t^8.604 + 2*t^8.749 + t^8.753 + 10*t^8.906 + t^8.91 + 3*t^8.941 - t^4.624/y - t^7.228/y + t^8.02/y + t^8.357/y + (2*t^8.847)/y + (2*t^8.996)/y - t^4.624*y - t^7.228*y + t^8.02*y + t^8.357*y + 2*t^8.847*y + 2*t^8.996*y (g4*t^2.604)/g3^5 + g3^4*t^2.753 + (g3^5*t^3.243)/g2 + g2*g4*t^3.243 + g1*g4*t^3.733 + g3*g4*t^3.733 + (g3^2*g4*t^3.733)/g1 + g1*g2*t^3.886 + g2*g3*t^3.886 + (g2*g3^2*t^3.886)/g1 + (g1*g3^5*t^3.886)/(g2*g4) + (g3^6*t^3.886)/(g2*g4) + (g3^7*t^3.886)/(g1*g2*g4) + g1*g3*t^4.376 + g3^2*t^4.376 + (g3^3*t^4.376)/g1 + (g4^2*t^4.714)/g3^2 + (g3^3*t^4.867)/g2 + (g2*g4*t^4.867)/g3^2 + (g2^2*t^5.02)/g3^2 + (g3^8*t^5.02)/(g2^2*g4^2) + (g3^3*t^5.02)/g4 + (g4^2*t^5.208)/g3^10 + (g4*t^5.357)/g3 + g3^8*t^5.506 + (g3^9*t^5.996)/g2 + g2*g3^4*g4*t^5.996 - 4*t^6. - (g1*t^6.)/g3 - (g3*t^6.)/g1 - (g3^5*t^6.)/(g2^2*g4) - (g2^2*g4*t^6.)/g3^5 - (g3^5*t^6.153)/(g2*g4^2) - (g2*t^6.153)/g4 + (g1*g4^2*t^6.337)/g3^5 + (g4^2*t^6.337)/g3^4 + (g4^2*t^6.337)/(g1*g3^3) + (g3^10*t^6.486)/g2^2 + g1*g3^4*g4*t^6.486 + 2*g3^5*g4*t^6.486 + (g3^6*g4*t^6.486)/g1 + g2^2*g4^2*t^6.486 + g1*g2*g3^4*t^6.639 + g2*g3^5*t^6.639 + (g2*g3^6*t^6.639)/g1 + (g1*g3^9*t^6.639)/(g2*g4) + (g3^10*t^6.639)/(g2*g4) + (g3^11*t^6.639)/(g1*g2*g4) - (g1*t^6.643)/g4 - (g3*t^6.643)/g4 - (g3^2*t^6.643)/(g1*g4) + (g1*g3^5*g4*t^6.976)/g2 + (g3^6*g4*t^6.976)/g2 + (g3^7*g4*t^6.976)/(g1*g2) + g1*g2*g4^2*t^6.976 + g2*g3*g4^2*t^6.976 + (g2*g3^2*g4^2*t^6.976)/g1 + 2*g1*g3^5*t^7.129 + 2*g3^6*t^7.129 + (2*g3^7*t^7.129)/g1 + (g1*g3^10*t^7.129)/(g2^2*g4) + (g3^11*t^7.129)/(g2^2*g4) + (g3^12*t^7.129)/(g1*g2^2*g4) + g1*g2^2*g4*t^7.129 + g2^2*g3*g4*t^7.129 + (g2^2*g3^2*g4*t^7.129)/g1 - (g1*g2*t^7.133)/g3^4 - (g2*t^7.133)/g3^3 - (g2*t^7.133)/(g1*g3^2) - (g1*g3*t^7.133)/(g2*g4) - (g3^2*t^7.133)/(g2*g4) - (g3^3*t^7.133)/(g1*g2*g4) + (g4^3*t^7.318)/g3^7 + g1^2*g4^2*t^7.467 + g1*g3*g4^2*t^7.467 + 2*g3^2*g4^2*t^7.467 + (g3^3*g4^2*t^7.467)/g1 + (g3^4*g4^2*t^7.467)/g1^2 + (g1^2*g3^5*t^7.619)/g2 + (2*g1*g3^6*t^7.619)/g2 + (3*g3^7*t^7.619)/g2 + (2*g3^8*t^7.619)/(g1*g2) + (g3^9*t^7.619)/(g1^2*g2) + g1^2*g2*g4*t^7.619 + 2*g1*g2*g3*g4*t^7.619 + 3*g2*g3^2*g4*t^7.619 + (2*g2*g3^3*g4*t^7.619)/g1 + (g2*g3^4*g4*t^7.619)/g1^2 - (g1*t^7.624)/g3^3 - (2*t^7.624)/g3^2 - t^7.624/(g1*g3) + g1^2*g2^2*t^7.772 + g1*g2^2*g3*t^7.772 + 2*g2^2*g3^2*t^7.772 + (g2^2*g3^3*t^7.772)/g1 + (g2^2*g3^4*t^7.772)/g1^2 + (g1^2*g3^10*t^7.772)/(g2^2*g4^2) + (g1*g3^11*t^7.772)/(g2^2*g4^2) + (2*g3^12*t^7.772)/(g2^2*g4^2) + (g3^13*t^7.772)/(g1*g2^2*g4^2) + (g3^14*t^7.772)/(g1^2*g2^2*g4^2) + (g1^2*g3^5*t^7.772)/g4 + (g1*g3^6*t^7.772)/g4 + (2*g3^7*t^7.772)/g4 + (g3^8*t^7.772)/(g1*g4) + (g3^9*t^7.772)/(g1^2*g4) - (g3^3*t^7.777)/(g2*g4^2) - (g2*t^7.777)/(g3^2*g4) + (g4^3*t^7.812)/g3^15 + (g3^3*g4^2*t^7.957)/g2 + (g2*g4^3*t^7.957)/g3^2 + (g4^2*t^7.961)/g3^6 + (g3^8*t^8.11)/g2^2 + g1^2*g3*g4*t^8.11 + g1*g3^2*g4*t^8.11 + 3*g3^3*g4*t^8.11 + (g3^4*g4*t^8.11)/g1 + (g3^5*g4*t^8.11)/g1^2 + (g2^2*g4^2*t^8.11)/g3^2 + g3^12*t^8.258 + g1^2*g2*g3*t^8.263 + g1*g2*g3^2*t^8.263 + 2*g2*g3^3*t^8.263 + (g2*g3^4*t^8.263)/g1 + (g2*g3^5*t^8.263)/g1^2 + (g3^13*t^8.263)/(g2^3*g4^2) + (g1^2*g3^6*t^8.263)/(g2*g4) + (g1*g3^7*t^8.263)/(g2*g4) + (2*g3^8*t^8.263)/(g2*g4) + (g3^9*t^8.263)/(g1*g2*g4) + (g3^10*t^8.263)/(g1^2*g2*g4) + (g2^3*g4*t^8.263)/g3^2 + (g4^3*t^8.447)/g1 + (g1*g4^3*t^8.447)/g3^2 + (g4^3*t^8.447)/g3 + (g1*g3^3*g4*t^8.6)/g2 + (g3^4*g4*t^8.6)/g2 + (g3^5*g4*t^8.6)/(g1*g2) + (g2*g4^2*t^8.6)/g1 + (g1*g2*g4^2*t^8.6)/g3^2 + (g2*g4^2*t^8.6)/g3 - (g1*g4*t^8.604)/g3^6 - (3*g4*t^8.604)/g3^5 - (g4*t^8.604)/(g1*g3^4) + (g3^13*t^8.749)/g2 + g2*g3^8*g4*t^8.749 - 3*g3^4*t^8.753 + (g1*g3^8*t^8.753)/(g2^2*g4) + (g3^10*t^8.753)/(g1*g2^2*g4) + (g2^2*g4*t^8.753)/g1 + (g1*g2^2*g4*t^8.753)/g3^2 + (g2^3*t^8.906)/g1 + (g1*g2^3*t^8.906)/g3^2 + (g2^3*t^8.906)/g3 + (g1*g3^13*t^8.906)/(g2^3*g4^3) + (g3^14*t^8.906)/(g2^3*g4^3) + (g3^15*t^8.906)/(g1*g2^3*g4^3) + (g1*g3^8*t^8.906)/(g2*g4^2) + (g3^10*t^8.906)/(g1*g2*g4^2) + (g1*g2*g3^3*t^8.906)/g4 + (g2*g3^5*t^8.906)/(g1*g4) + t^8.91/g4^2 + (g1*g4^3*t^8.941)/g3^10 + (g4^3*t^8.941)/g3^9 + (g4^3*t^8.941)/(g1*g3^8) - t^4.624/(g3^2*y) - (g4*t^7.228)/(g3^7*y) + (g3^3*t^8.02)/(g4*y) + (g4*t^8.357)/(g3*y) + (g4*t^8.847)/(g2*y) + (g2*g4^2*t^8.847)/(g3^5*y) + (g3^9*t^8.996)/(g2*y) + (g2*g3^4*g4*t^8.996)/y - (t^4.624*y)/g3^2 - (g4*t^7.228*y)/g3^7 + (g3^3*t^8.02*y)/g4 + (g4*t^8.357*y)/g3 + (g4*t^8.847*y)/g2 + (g2*g4^2*t^8.847*y)/g3^5 + (g3^9*t^8.996*y)/g2 + g2*g3^4*g4*t^8.996*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55680 SU2adj1nf3 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ 0.8691 1.0645 0.8165 [M:[0.8785, 0.7991], q:[0.7196, 0.7196, 0.6005], qb:[0.6005, 0.5584, 0.5584], phi:[0.5607]] t^2.397 + t^2.636 + t^3.351 + 4*t^3.477 + 4*t^3.834 + 4*t^3.96 + t^4.318 + t^4.794 + 4*t^5.033 + 4*t^5.159 + t^5.271 + 3*t^5.285 + t^5.748 + t^5.986 - 9*t^6. - t^4.682/y - t^4.682*y detail