Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55658 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}q_{3}\tilde{q}_{1}$ | 0.8483 | 1.0329 | 0.8213 | [M:[0.6996], q:[0.7347, 0.7347, 0.7347], qb:[0.5657, 0.5539, 0.5539], phi:[0.5306]] | [M:[[0, -6, -1, -1]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }q_{2}q_{3}$, ${ }q_{1}q_{2}$, ${ }q_{1}q_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{3}$, ${ }M_{1}q_{1}\tilde{q}_{3}$ | ${}M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$ | -6 | t^2.099 + t^3.184 + t^3.323 + 2*t^3.359 + 6*t^3.866 + 2*t^3.901 + t^4.197 + 3*t^4.408 + 3*t^4.915 + 2*t^4.951 + t^4.986 + t^5.282 + t^5.422 + 2*t^5.458 + 4*t^5.964 - 6*t^6. - 2*t^6.036 + t^6.296 + t^6.367 + t^6.507 - 4*t^6.542 + t^6.647 + 2*t^6.682 + 3*t^6.718 + 3*t^7.014 + 2*t^7.049 + 6*t^7.189 + 11*t^7.225 + 4*t^7.26 + t^7.381 + t^7.521 - 4*t^7.592 - 2*t^7.627 + 18*t^7.732 + 10*t^7.767 + 2*t^7.803 + 4*t^8.063 - 3*t^8.099 + t^8.17 + 3*t^8.239 + 16*t^8.274 + 6*t^8.31 + 2*t^8.345 + t^8.395 + t^8.466 + 2*t^8.606 - 2*t^8.641 + 3*t^8.677 + t^8.745 + 14*t^8.781 + 9*t^8.816 + 4*t^8.852 + 2*t^8.888 - t^4.592/y - t^6.69/y + t^7.408/y - t^7.775/y + t^8.282/y + t^8.422/y + (2*t^8.458)/y + t^8.493/y - t^8.789/y + (6*t^8.964)/y - t^4.592*y - t^6.69*y + t^7.408*y - t^7.775*y + t^8.282*y + t^8.422*y + 2*t^8.458*y + t^8.493*y - t^8.789*y + 6*t^8.964*y | t^2.099/(g2^6*g3*g4) + t^3.184/(g2^4*g3^4*g4^4) + g3^5*g4^5*t^3.323 + g2^5*g3^5*t^3.359 + g2^5*g4^5*t^3.359 + g1*g3^5*t^3.866 + g2*g3^6*g4*t^3.866 + (g2^2*g3^7*g4^2*t^3.866)/g1 + g1*g4^5*t^3.866 + g2*g3*g4^6*t^3.866 + (g2^2*g3^2*g4^7*t^3.866)/g1 + g1*g2^5*t^3.901 + (g2^7*g3^2*g4^2*t^3.901)/g1 + t^4.197/(g2^12*g3^2*g4^2) + g1*g2*g3*g4*t^4.408 + g2^2*g3^2*g4^2*t^4.408 + (g2^3*g3^3*g4^3*t^4.408)/g1 + (g3^8*t^4.915)/(g2^2*g4^2) + (g3^3*g4^3*t^4.915)/g2^2 + (g4^8*t^4.915)/(g2^2*g3^2) + (g2^3*g3^3*t^4.951)/g4^2 + (g2^3*g4^3*t^4.951)/g3^2 + (g2^8*t^4.986)/(g3^2*g4^2) + t^5.282/(g2^10*g3^5*g4^5) + (g3^4*g4^4*t^5.422)/g2^6 + (g3^4*t^5.458)/(g2*g4) + (g4^4*t^5.458)/(g2*g3) + (g1*g3^4*t^5.964)/(g2^6*g4) + (g3^6*g4*t^5.964)/(g1*g2^4) + (g1*g4^4*t^5.964)/(g2^6*g3) + (g3*g4^6*t^5.964)/(g1*g2^4) - 4*t^6. - (g3^5*t^6.)/g4^5 - (g4^5*t^6.)/g3^5 - (g2^5*t^6.036)/g3^5 - (g2^5*t^6.036)/g4^5 + t^6.296/(g2^18*g3^3*g4^3) + t^6.367/(g2^8*g3^8*g4^8) + (g3*g4*t^6.507)/g2^4 - (g1*t^6.542)/g3^5 - (g1*t^6.542)/g4^5 - (g2^2*g3^2*t^6.542)/(g1*g4^3) - (g2^2*g4^2*t^6.542)/(g1*g3^3) + g3^10*g4^10*t^6.647 + g2^5*g3^10*g4^5*t^6.682 + g2^5*g3^5*g4^10*t^6.682 + g2^10*g3^10*t^6.718 + g2^10*g3^5*g4^5*t^6.718 + g2^10*g4^10*t^6.718 + (g3^7*t^7.014)/(g2^8*g4^3) + (g3^2*g4^2*t^7.014)/g2^8 + (g4^7*t^7.014)/(g2^8*g3^3) + (g3^2*t^7.049)/(g2^3*g4^3) + (g4^2*t^7.049)/(g2^3*g3^3) + g1*g3^10*g4^5*t^7.189 + g2*g3^11*g4^6*t^7.189 + (g2^2*g3^12*g4^7*t^7.189)/g1 + g1*g3^5*g4^10*t^7.189 + g2*g3^6*g4^11*t^7.189 + (g2^2*g3^7*g4^12*t^7.189)/g1 + g1*g2^5*g3^10*t^7.225 + g2^6*g3^11*g4*t^7.225 + (g2^7*g3^12*g4^2*t^7.225)/g1 + 2*g1*g2^5*g3^5*g4^5*t^7.225 + g2^6*g3^6*g4^6*t^7.225 + (2*g2^7*g3^7*g4^7*t^7.225)/g1 + g1*g2^5*g4^10*t^7.225 + g2^6*g3*g4^11*t^7.225 + (g2^7*g3^2*g4^12*t^7.225)/g1 + g1*g2^10*g3^5*t^7.26 + (g2^12*g3^7*g4^2*t^7.26)/g1 + g1*g2^10*g4^5*t^7.26 + (g2^12*g3^2*g4^7*t^7.26)/g1 + t^7.381/(g2^16*g3^6*g4^6) + (g3^3*g4^3*t^7.521)/g2^12 - (g3^3*t^7.592)/(g2^2*g4^7) - (2*t^7.592)/(g2^2*g3^2*g4^2) - (g4^3*t^7.592)/(g2^2*g3^7) - (g2^3*t^7.627)/(g3^2*g4^7) - (g2^3*t^7.627)/(g3^7*g4^2) + g1^2*g3^10*t^7.732 + g1*g2*g3^11*g4*t^7.732 + g2^2*g3^12*g4^2*t^7.732 + (g2^3*g3^13*g4^3*t^7.732)/g1 + (g2^4*g3^14*g4^4*t^7.732)/g1^2 + g1^2*g3^5*g4^5*t^7.732 + 2*g1*g2*g3^6*g4^6*t^7.732 + 2*g2^2*g3^7*g4^7*t^7.732 + (2*g2^3*g3^8*g4^8*t^7.732)/g1 + (g2^4*g3^9*g4^9*t^7.732)/g1^2 + g1^2*g4^10*t^7.732 + g1*g2*g3*g4^11*t^7.732 + g2^2*g3^2*g4^12*t^7.732 + (g2^3*g3^3*g4^13*t^7.732)/g1 + (g2^4*g3^4*g4^14*t^7.732)/g1^2 + g1^2*g2^5*g3^5*t^7.767 + g1*g2^6*g3^6*g4*t^7.767 + g2^7*g3^7*g4^2*t^7.767 + (g2^8*g3^8*g4^3*t^7.767)/g1 + (g2^9*g3^9*g4^4*t^7.767)/g1^2 + g1^2*g2^5*g4^5*t^7.767 + g1*g2^6*g3*g4^6*t^7.767 + g2^7*g3^2*g4^7*t^7.767 + (g2^8*g3^3*g4^8*t^7.767)/g1 + (g2^9*g3^4*g4^9*t^7.767)/g1^2 + g1^2*g2^10*t^7.803 + (g2^14*g3^4*g4^4*t^7.803)/g1^2 + (g3^5*t^8.063)/(g1*g2^10) + (g1*g3^3*t^8.063)/(g2^12*g4^2) + (g1*g4^3*t^8.063)/(g2^12*g3^2) + (g4^5*t^8.063)/(g1*g2^10) - (3*t^8.099)/(g2^6*g3*g4) + (g2^4*t^8.17)/(g3^6*g4^6) + (g3^13*g4^3*t^8.239)/g2^2 + (g3^8*g4^8*t^8.239)/g2^2 + (g3^3*g4^13*t^8.239)/g2^2 + (g2^3*g3^13*t^8.274)/g4^2 + g1^2*g2*g3^6*g4*t^8.274 + g1*g2^2*g3^7*g4^2*t^8.274 + 3*g2^3*g3^8*g4^3*t^8.274 + (g2^4*g3^9*g4^4*t^8.274)/g1 + (g2^5*g3^10*g4^5*t^8.274)/g1^2 + g1^2*g2*g3*g4^6*t^8.274 + g1*g2^2*g3^2*g4^7*t^8.274 + 3*g2^3*g3^3*g4^8*t^8.274 + (g2^4*g3^4*g4^9*t^8.274)/g1 + (g2^5*g3^5*g4^10*t^8.274)/g1^2 + (g2^3*g4^13*t^8.274)/g3^2 + (g2^8*g3^8*t^8.31)/g4^2 + g1^2*g2^6*g3*g4*t^8.31 + 2*g2^8*g3^3*g4^3*t^8.31 + (g2^10*g3^5*g4^5*t^8.31)/g1^2 + (g2^8*g4^8*t^8.31)/g3^2 + (g2^13*g3^3*t^8.345)/g4^2 + (g2^13*g4^3*t^8.345)/g3^2 + t^8.395/(g2^24*g3^4*g4^4) + t^8.466/(g2^14*g3^9*g4^9) + (2*t^8.606)/g2^10 + t^8.641/(g2^5*g3^5) - (g1*t^8.641)/(g2^6*g3*g4^6) + t^8.641/(g2^5*g4^5) - (g3*t^8.641)/(g1*g2^4*g4^4) - (g1*t^8.641)/(g2^6*g3^6*g4) - (g4*t^8.641)/(g1*g2^4*g3^4) + t^8.677/g3^10 + t^8.677/g4^10 + t^8.677/(g3^5*g4^5) + (g3^9*g4^9*t^8.745)/g2^6 + (g3^15*t^8.781)/g1 + (g1*g3^13*t^8.781)/(g2^2*g4^2) + (g3^14*t^8.781)/(g2*g4) + (g1*g3^8*g4^3*t^8.781)/g2^2 + (2*g3^9*g4^4*t^8.781)/g2 + (g3^10*g4^5*t^8.781)/g1 + (g1*g3^3*g4^8*t^8.781)/g2^2 + (2*g3^4*g4^9*t^8.781)/g2 + (g3^5*g4^10*t^8.781)/g1 + (g1*g4^13*t^8.781)/(g2^2*g3^2) + (g4^14*t^8.781)/(g2*g3) + (g4^15*t^8.781)/g1 + (g2^5*g3^10*t^8.816)/g1 + (g1*g2^3*g3^8*t^8.816)/g4^2 + (g2^4*g3^9*t^8.816)/g4 + g1*g2^3*g3^3*g4^3*t^8.816 + g2^4*g3^4*g4^4*t^8.816 + (g2^5*g3^5*g4^5*t^8.816)/g1 + (g1*g2^3*g4^8*t^8.816)/g3^2 + (g2^4*g4^9*t^8.816)/g3 + (g2^5*g4^10*t^8.816)/g1 + (g2^10*g3^5*t^8.852)/g1 + (g1*g2^8*g3^3*t^8.852)/g4^2 + (g1*g2^8*g4^3*t^8.852)/g3^2 + (g2^10*g4^5*t^8.852)/g1 + (g2^15*t^8.888)/g1 + (g1*g2^13*t^8.888)/(g3^2*g4^2) - t^4.592/(g2^2*g3^2*g4^2*y) - t^6.69/(g2^8*g3^3*g4^3*y) + (g2^2*g3^2*g4^2*t^7.408)/y - t^7.775/(g2^6*g3^6*g4^6*y) + t^8.282/(g2^10*g3^5*g4^5*y) + (g3^4*g4^4*t^8.422)/(g2^6*y) + (g3^4*t^8.458)/(g2*g4*y) + (g4^4*t^8.458)/(g2*g3*y) + (g2^4*t^8.493)/(g3*g4*y) - t^8.789/(g2^14*g3^4*g4^4*y) + (g3^5*t^8.964)/(g2^5*y) + (g1*g3^4*t^8.964)/(g2^6*g4*y) + (g3^6*g4*t^8.964)/(g1*g2^4*y) + (g1*g4^4*t^8.964)/(g2^6*g3*y) + (g4^5*t^8.964)/(g2^5*y) + (g3*g4^6*t^8.964)/(g1*g2^4*y) - (t^4.592*y)/(g2^2*g3^2*g4^2) - (t^6.69*y)/(g2^8*g3^3*g4^3) + g2^2*g3^2*g4^2*t^7.408*y - (t^7.775*y)/(g2^6*g3^6*g4^6) + (t^8.282*y)/(g2^10*g3^5*g4^5) + (g3^4*g4^4*t^8.422*y)/g2^6 + (g3^4*t^8.458*y)/(g2*g4) + (g4^4*t^8.458*y)/(g2*g3) + (g2^4*t^8.493*y)/(g3*g4) - (t^8.789*y)/(g2^14*g3^4*g4^4) + (g3^5*t^8.964*y)/g2^5 + (g1*g3^4*t^8.964*y)/(g2^6*g4) + (g3^6*g4*t^8.964*y)/(g1*g2^4) + (g1*g4^4*t^8.964*y)/(g2^6*g3) + (g4^5*t^8.964*y)/g2^5 + (g3*g4^6*t^8.964*y)/(g1*g2^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55783 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}q_{3}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ | 0.8482 | 1.0325 | 0.8215 | [M:[0.7029], q:[0.7311, 0.7387, 0.7349], qb:[0.5622, 0.5584, 0.5538], phi:[0.5302]] | t^2.109 + t^3.181 + t^3.337 + t^3.348 + t^3.362 + t^3.855 + t^3.866 + t^3.868 + t^3.878 + 2*t^3.88 + t^3.891 + t^3.903 + t^4.218 + t^4.398 + t^4.409 + t^4.421 + t^4.914 + t^4.927 + t^4.939 + t^4.941 + t^4.952 + t^4.964 + t^5.29 + t^5.445 + t^5.457 + t^5.471 + t^5.964 + t^5.977 - 3*t^6. - t^4.591/y - t^4.591*y | detail | |
55793 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}q_{3}\tilde{q}_{1}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.8161 | 0.9885 | 0.8257 | [M:[0.7378], q:[0.7505, 0.7505, 0.7505], qb:[0.5117, 0.7505, 0.4904], phi:[0.4989]] | t^2.213 + t^2.994 + t^3.006 + 4*t^3.723 + 3*t^3.787 + t^4.427 + t^4.439 + 7*t^4.503 + t^4.567 + t^5.207 + t^5.22 + 3*t^5.936 + t^5.987 - 4*t^6. - t^4.497/y - t^4.497*y | detail | |
55798 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}q_{3}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 0.8689 | 1.0729 | 0.8099 | [M:[0.6935, 0.6872], q:[0.7293, 0.7419, 0.7356], qb:[0.5709, 0.5535, 0.5535], phi:[0.5288]] | t^2.062 + t^2.08 + t^3.173 + t^3.321 + 2*t^3.373 + 2*t^3.849 + 2*t^3.867 + 2*t^3.886 + t^3.901 + t^4.123 + t^4.142 + t^4.161 + t^4.395 + t^4.414 + t^4.432 + 3*t^4.908 + 2*t^4.96 + t^5.012 + t^5.234 + t^5.253 + t^5.383 + t^5.402 + 2*t^5.435 + 2*t^5.454 + 2*t^5.91 + 4*t^5.929 + 2*t^5.948 + t^5.962 + 2*t^5.967 - 6*t^6. - t^4.586/y - t^4.586*y | detail | |
55741 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ + ${ }M_{1}q_{3}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}$ | 0.694 | 0.8411 | 0.8251 | [M:[0.6741], q:[0.5261, 1.0684, 0.7973], qb:[0.5287, 0.9316, 0.5261], phi:[0.4055]] | t^2.022 + t^2.433 + t^3.156 + 2*t^3.164 + 2*t^3.97 + t^4.045 + 3*t^4.373 + 2*t^4.381 + t^4.388 + t^4.455 + t^4.866 + t^5.179 + 2*t^5.186 + t^5.589 + 2*t^5.597 - 5*t^6. - t^4.216/y - t^4.216*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55446 | SU2adj1nf3 | ${}\phi_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{3}^{2}$ | 0.8279 | 0.9949 | 0.8321 | [q:[0.7328, 0.7328, 0.7328], qb:[0.5547, 0.5547, 0.5547], phi:[0.5344]] | t^3.206 + 3*t^3.328 + 9*t^3.862 + 3*t^4.397 + 6*t^4.931 - 12*t^6. - t^4.603/y - t^4.603*y | detail |