Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55793 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8161 | 0.9885 | 0.8257 | [X:[], M:[0.7378], q:[0.7505, 0.7505, 0.7505], qb:[0.5117, 0.7505, 0.4904], phi:[0.4989]] | [X:[], M:[[0, -5, 1]], q:[[-1, 2, 0], [1, 0, 0], [0, 1, 0]], qb:[[0, 4, -1], [0, 1, 0], [0, 0, 1]], phi:[[0, -2, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ q_1q_2$, $ q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1q_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ \phi_1^4$ | $\phi_1\tilde{q}_2^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_3$ | -4 | t^2.21 + t^2.99 + t^3.01 + 4*t^3.72 + 3*t^3.79 + t^4.43 + t^4.44 + 7*t^4.5 + t^4.57 + t^5.21 + t^5.22 + 3*t^5.94 + t^5.99 - 4*t^6. + t^6.01 - t^6.06 + t^6.64 + t^6.65 + 3*t^6.72 + 4*t^6.73 - 4*t^6.78 + 3*t^6.79 + t^7.42 + t^7.43 + 10*t^7.45 + 12*t^7.51 + 6*t^7.57 + 3*t^8.15 + 4*t^8.16 + t^8.2 - 4*t^8.21 + 20*t^8.23 - t^8.28 + 13*t^8.29 + 3*t^8.35 + t^8.85 + t^8.87 + t^8.88 + 3*t^8.93 + 4*t^8.94 + t^8.98 - 4*t^8.99 - t^4.5/y - t^6.71/y - t^7.49/y + t^7.5/y + t^8.21/y + t^8.22/y + t^8.28/y - t^8.92/y + (4*t^8.94)/y - t^4.5*y - t^6.71*y - t^7.49*y + t^7.5*y + t^8.21*y + t^8.22*y + t^8.28*y - t^8.92*y + 4*t^8.94*y | (g3*t^2.21)/g2^5 + t^2.99/g2^4 + g2^4*t^3.01 + g1*g3*t^3.72 + 2*g2*g3*t^3.72 + (g2^2*g3*t^3.72)/g1 + (g1*g2^4*t^3.79)/g3 + (g2^5*t^3.79)/g3 + (g2^6*t^3.79)/(g1*g3) + (g3^2*t^4.43)/g2^10 + (g3^2*t^4.44)/g2^2 + 2*g1*g2*t^4.5 + 3*g2^2*t^4.5 + (2*g2^3*t^4.5)/g1 + (g2^6*t^4.57)/g3^2 + (g3*t^5.21)/g2^9 + (g3*t^5.22)/g2 + (g1*g3^2*t^5.94)/g2^5 + (g3^2*t^5.94)/g2^4 + (g3^2*t^5.94)/(g1*g2^3) + t^5.99/g2^8 - 2*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 + g2^8*t^6.01 - (g2^4*t^6.06)/g3^2 + (g3^3*t^6.64)/g2^15 + (g3^3*t^6.65)/g2^7 + (g1*g3*t^6.72)/g2^4 + (g3*t^6.72)/g2^3 + (g3*t^6.72)/(g1*g2^2) + g1*g2^4*g3*t^6.73 + 2*g2^5*g3*t^6.73 + (g2^6*g3*t^6.73)/g1 - (g1*t^6.78)/g3 - (2*g2*t^6.78)/g3 - (g2^2*t^6.78)/(g1*g3) + (g1*g2^8*t^6.79)/g3 + (g2^9*t^6.79)/g3 + (g2^10*t^6.79)/(g1*g3) + (g3^2*t^7.42)/g2^14 + (g3^2*t^7.43)/g2^6 + g1^2*g3^2*t^7.45 + 2*g1*g2*g3^2*t^7.45 + 4*g2^2*g3^2*t^7.45 + (2*g2^3*g3^2*t^7.45)/g1 + (g2^4*g3^2*t^7.45)/g1^2 + g1^2*g2^4*t^7.51 + 3*g1*g2^5*t^7.51 + 4*g2^6*t^7.51 + (3*g2^7*t^7.51)/g1 + (g2^8*t^7.51)/g1^2 + (g1^2*g2^8*t^7.57)/g3^2 + (g1*g2^9*t^7.57)/g3^2 + (2*g2^10*t^7.57)/g3^2 + (g2^11*t^7.57)/(g1*g3^2) + (g2^12*t^7.57)/(g1^2*g3^2) + (g1*g3^3*t^8.15)/g2^10 + (g3^3*t^8.15)/g2^9 + (g3^3*t^8.15)/(g1*g2^8) + (g3^3*t^8.16)/g1 + (g1*g3^3*t^8.16)/g2^2 + (2*g3^3*t^8.16)/g2 + (g3*t^8.2)/g2^13 - (g1*g3*t^8.21)/g2^6 - (2*g3*t^8.21)/g2^5 - (g3*t^8.21)/(g1*g2^4) + 2*g1^2*g2*g3*t^8.23 + 5*g1*g2^2*g3*t^8.23 + 6*g2^3*g3*t^8.23 + (5*g2^4*g3*t^8.23)/g1 + (2*g2^5*g3*t^8.23)/g1^2 - t^8.28/(g2*g3) + (2*g1^2*g2^5*t^8.29)/g3 + (3*g1*g2^6*t^8.29)/g3 + (3*g2^7*t^8.29)/g3 + (3*g2^8*t^8.29)/(g1*g3) + (2*g2^9*t^8.29)/(g1^2*g3) + (g1*g2^10*t^8.35)/g3^3 + (g2^11*t^8.35)/g3^3 + (g2^12*t^8.35)/(g1*g3^3) + (g3^4*t^8.85)/g2^20 + (g3^4*t^8.87)/g2^12 + (g3^4*t^8.88)/g2^4 + (g1*g3^2*t^8.93)/g2^9 + (g3^2*t^8.93)/g2^8 + (g3^2*t^8.93)/(g1*g2^7) + 2*g3^2*t^8.94 + (g1*g3^2*t^8.94)/g2 + (g2*g3^2*t^8.94)/g1 + t^8.98/g2^12 - (g1*t^8.99)/g2^5 - (2*t^8.99)/g2^4 - t^8.99/(g1*g2^3) - t^4.5/(g2^2*y) - (g3*t^6.71)/(g2^7*y) - t^7.49/(g2^6*y) + (g2^2*t^7.5)/y + (g3*t^8.21)/(g2^9*y) + (g3*t^8.22)/(g2*y) + (g2^3*t^8.28)/(g3*y) - (g3^2*t^8.92)/(g2^12*y) + (g1*g3^2*t^8.94)/(g2^5*y) + (2*g3^2*t^8.94)/(g2^4*y) + (g3^2*t^8.94)/(g1*g2^3*y) - (t^4.5*y)/g2^2 - (g3*t^6.71*y)/g2^7 - (t^7.49*y)/g2^6 + g2^2*t^7.5*y + (g3*t^8.21*y)/g2^9 + (g3*t^8.22*y)/g2 + (g2^3*t^8.28*y)/g3 - (g3^2*t^8.92*y)/g2^12 + (g1*g3^2*t^8.94*y)/g2^5 + (2*g3^2*t^8.94*y)/g2^4 + (g3^2*t^8.94*y)/(g1*g2^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55658 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ | 0.8483 | 1.0329 | 0.8213 | [X:[], M:[0.6996], q:[0.7347, 0.7347, 0.7347], qb:[0.5657, 0.5539, 0.5539], phi:[0.5306]] | t^2.1 + t^3.18 + t^3.32 + 2*t^3.36 + 6*t^3.87 + 2*t^3.9 + t^4.2 + 3*t^4.41 + 3*t^4.92 + 2*t^4.95 + t^4.99 + t^5.28 + t^5.42 + 2*t^5.46 + 4*t^5.96 - 6*t^6. - t^4.59/y - t^4.59*y | detail |