Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55783 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ + $ M_1q_2\tilde{q}_2$ 0.8482 1.0325 0.8215 [X:[], M:[0.7029], q:[0.7311, 0.7387, 0.7349], qb:[0.5622, 0.5584, 0.5538], phi:[0.5302]] [X:[], M:[[-6, -1, -1]], q:[[-4, 6, 1], [6, -4, 1], [1, 1, 1]], qb:[[5, 0, 0], [0, 5, 0], [0, 0, 5]], phi:[[-2, -2, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_1\tilde{q}_1$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_1^2$, $ q_1q_3$, $ q_1q_2$, $ q_2q_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_1\phi_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1q_1\tilde{q}_3$, $ M_1q_1\tilde{q}_2$ . -3 t^2.11 + t^3.18 + t^3.34 + t^3.35 + t^3.36 + t^3.85 + 2*t^3.87 + 3*t^3.88 + t^3.89 + t^3.9 + t^4.22 + t^4.4 + t^4.41 + t^4.42 + t^4.91 + t^4.93 + 2*t^4.94 + t^4.95 + t^4.96 + t^5.29 + t^5.45 + t^5.46 + t^5.47 + t^5.96 + t^5.98 - 3*t^6. - 2*t^6.01 - t^6.03 + t^6.33 + t^6.36 - t^6.53 - t^6.54 - t^6.55 + t^6.67 + t^6.68 + 2*t^6.7 + t^6.71 + t^6.72 + t^7.02 + t^7.04 + 2*t^7.05 + t^7.06 + t^7.19 + 2*t^7.2 + 3*t^7.21 + 3*t^7.22 + 5*t^7.23 + 4*t^7.24 + 2*t^7.25 + t^7.26 + t^7.4 + t^7.55 - t^7.58 - 2*t^7.59 - 2*t^7.6 - t^7.62 + t^7.71 + 2*t^7.72 + 4*t^7.73 + 2*t^7.74 + 5*t^7.75 + 7*t^7.76 + 4*t^7.77 + 3*t^7.78 + t^7.79 + t^7.81 + t^8.07 + t^8.09 + t^8.1 - 2*t^8.11 + t^8.15 + 2*t^8.25 + 3*t^8.26 + t^8.27 + 6*t^8.28 + 5*t^8.29 + 5*t^8.3 + 3*t^8.31 + t^8.32 + t^8.33 + t^8.44 + t^8.47 + t^8.63 + t^8.65 + t^8.68 + t^8.77 + 3*t^8.78 + 4*t^8.79 + 3*t^8.8 + 4*t^8.81 + 6*t^8.82 + 4*t^8.83 + 3*t^8.84 + t^8.86 + t^8.87 - t^4.59/y - t^6.7/y + t^7.41/y - t^7.77/y + t^8.29/y + t^8.45/y + t^8.46/y + t^8.47/y + t^8.48/y - t^8.81/y + t^8.96/y + t^8.97/y + t^8.98/y + (3*t^8.99)/y - t^4.59*y - t^6.7*y + t^7.41*y - t^7.77*y + t^8.29*y + t^8.45*y + t^8.46*y + t^8.47*y + t^8.48*y - t^8.81*y + t^8.96*y + t^8.97*y + t^8.98*y + 3*t^8.99*y t^2.11/(g1^6*g2*g3) + t^3.18/(g1^4*g2^4*g3^4) + g2^5*g3^5*t^3.34 + g1^5*g3^5*t^3.35 + g1^5*g2^5*t^3.36 + (g2^6*g3^6*t^3.85)/g1^4 + (g2^11*g3*t^3.87)/g1^4 + g1*g2*g3^6*t^3.87 + 2*g1*g2^6*g3*t^3.88 + (g1^6*g3^6*t^3.88)/g2^4 + g1^6*g2*g3*t^3.89 + (g1^11*g3*t^3.9)/g2^4 + t^4.22/(g1^12*g2^2*g3^2) + (g2^7*g3^2*t^4.4)/g1^3 + g1^2*g2^2*g3^2*t^4.41 + (g1^7*g3^2*t^4.42)/g2^3 + (g3^8*t^4.91)/(g1^2*g2^2) + (g2^3*g3^3*t^4.93)/g1^2 + (g2^8*t^4.94)/(g1^2*g3^2) + (g1^3*g3^3*t^4.94)/g2^2 + (g1^3*g2^3*t^4.95)/g3^2 + (g1^8*t^4.96)/(g2^2*g3^2) + t^5.29/(g1^10*g2^5*g3^5) + (g2^4*g3^4*t^5.45)/g1^6 + (g3^4*t^5.46)/(g1*g2) + (g2^4*t^5.47)/(g1*g3) + (g2^5*g3^5*t^5.96)/g1^10 + (g2^10*t^5.98)/g1^10 - 3*t^6. - (g1^5*t^6.01)/g2^5 - (g2^5*t^6.01)/g3^5 - (g1^5*t^6.03)/g3^5 + t^6.33/(g1^18*g2^3*g3^3) + t^6.36/(g1^8*g2^8*g3^8) - (g2^6*t^6.53)/(g1^4*g3^4) - (g1^6*g3*t^6.54)/g2^9 - (g1^6*t^6.55)/(g2^4*g3^4) + g2^10*g3^10*t^6.67 + g1^5*g2^5*g3^10*t^6.68 + g1^5*g2^10*g3^5*t^6.7 + g1^10*g3^10*t^6.7 + g1^10*g2^5*g3^5*t^6.71 + g1^10*g2^10*t^6.72 + (g3^7*t^7.02)/(g1^8*g2^3) + (g2^2*g3^2*t^7.04)/g1^8 + (g2^7*t^7.05)/(g1^8*g3^3) + (g3^2*t^7.05)/(g1^3*g2^3) + (g2^2*t^7.06)/(g1^3*g3^3) + (g2^11*g3^11*t^7.19)/g1^4 + 2*g1*g2^6*g3^11*t^7.2 + (g2^16*g3^6*t^7.21)/g1^4 + 2*g1^6*g2*g3^11*t^7.21 + 3*g1*g2^11*g3^6*t^7.22 + g1*g2^16*g3*t^7.23 + 3*g1^6*g2^6*g3^6*t^7.23 + (g1^11*g3^11*t^7.23)/g2^4 + 2*g1^6*g2^11*g3*t^7.24 + 2*g1^11*g2*g3^6*t^7.24 + g1^11*g2^6*g3*t^7.25 + (g1^16*g3^6*t^7.25)/g2^4 + g1^16*g2*g3*t^7.26 + t^7.4/(g1^16*g2^6*g3^6) + (g2^3*g3^3*t^7.55)/g1^12 - (g3^3*t^7.58)/(g1^2*g2^7) - (2*t^7.59)/(g1^2*g2^2*g3^2) - (g2^3*t^7.6)/(g1^2*g3^7) - (g1^3*t^7.6)/(g2^7*g3^2) - (g1^3*t^7.62)/(g2^2*g3^7) + (g2^12*g3^12*t^7.71)/g1^8 + (g2^17*g3^7*t^7.72)/g1^8 + (g2^7*g3^12*t^7.72)/g1^3 + (3*g2^12*g3^7*t^7.73)/g1^3 + g1^2*g2^2*g3^12*t^7.73 + (g2^22*g3^2*t^7.74)/g1^8 + (g1^7*g3^12*t^7.74)/g2^3 + (2*g2^17*g3^2*t^7.75)/g1^3 + 3*g1^2*g2^7*g3^7*t^7.75 + 3*g1^2*g2^12*g3^2*t^7.76 + 3*g1^7*g2^2*g3^7*t^7.76 + (g1^12*g3^12*t^7.76)/g2^8 + 2*g1^7*g2^7*g3^2*t^7.77 + (2*g1^12*g3^7*t^7.77)/g2^3 + 2*g1^12*g2^2*g3^2*t^7.78 + (g1^17*g3^7*t^7.78)/g2^8 + (g1^17*g3^2*t^7.79)/g2^3 + (g1^22*g3^2*t^7.81)/g2^8 + (g2^4*g3^4*t^8.07)/g1^16 + (g2^9*t^8.09)/(g1^16*g3) + (g3^4*t^8.1)/(g1^6*g2^6) - (2*t^8.11)/(g1^6*g2*g3) + (g1^4*t^8.15)/(g2^6*g3^6) + (g2^13*g3^8*t^8.25)/g1^7 + (g2^3*g3^13*t^8.25)/g1^2 + (2*g2^8*g3^8*t^8.26)/g1^2 + (g1^3*g3^13*t^8.26)/g2^2 + (g2^18*g3^3*t^8.27)/g1^7 + (3*g2^13*g3^3*t^8.28)/g1^2 + 3*g1^3*g2^3*g3^8*t^8.28 + 3*g1^3*g2^8*g3^3*t^8.29 + (2*g1^8*g3^8*t^8.29)/g2^2 + (g1^3*g2^13*t^8.3)/g3^2 + 3*g1^8*g2^3*g3^3*t^8.3 + (g1^13*g3^8*t^8.3)/g2^7 + (g1^8*g2^8*t^8.31)/g3^2 + (2*g1^13*g3^3*t^8.31)/g2^2 + (g1^18*g3^3*t^8.32)/g2^7 + (g1^13*g2^3*t^8.33)/g3^2 + t^8.44/(g1^24*g2^4*g3^4) + t^8.47/(g1^14*g2^9*g3^9) + t^8.63/g1^10 + t^8.64/(g1^5*g2^5) - (g2^5*t^8.64)/(g1^10*g3^5) + t^8.65/(g1^5*g3^5) + t^8.68/g3^10 + (g2^4*g3^14*t^8.77)/g1^6 + (2*g2^9*g3^9*t^8.78)/g1^6 + (g3^14*t^8.78)/(g1*g2) + (3*g2^4*g3^9*t^8.79)/g1 + (g1^4*g3^14*t^8.79)/g2^6 + (g2^14*g3^4*t^8.8)/g1^6 + (2*g1^4*g3^9*t^8.8)/g2 + (g2^19*t^8.81)/(g1^6*g3) + (3*g2^9*g3^4*t^8.81)/g1 + (2*g2^14*t^8.82)/(g1*g3) + 3*g1^4*g2^4*g3^4*t^8.82 + (g1^9*g3^9*t^8.82)/g2^6 + (3*g1^4*g2^9*t^8.83)/g3 + (g1^9*g3^4*t^8.83)/g2 + (2*g1^9*g2^4*t^8.84)/g3 + (g1^14*g3^4*t^8.84)/g2^6 + (g1^14*t^8.86)/(g2*g3) + (g1^19*t^8.87)/(g2^6*g3) - t^4.59/(g1^2*g2^2*g3^2*y) - t^6.7/(g1^8*g2^3*g3^3*y) + (g1^2*g2^2*g3^2*t^7.41)/y - t^7.77/(g1^6*g2^6*g3^6*y) + t^8.29/(g1^10*g2^5*g3^5*y) + (g2^4*g3^4*t^8.45)/(g1^6*y) + (g3^4*t^8.46)/(g1*g2*y) + (g2^4*t^8.47)/(g1*g3*y) + (g1^4*t^8.48)/(g2*g3*y) - t^8.81/(g1^14*g2^4*g3^4*y) + (g2^5*g3^5*t^8.96)/(g1^10*y) + (g3^5*t^8.97)/(g1^5*y) + (g2^10*t^8.98)/(g1^10*y) + (2*g2^5*t^8.99)/(g1^5*y) + (g3^5*t^8.99)/(g2^5*y) - (t^4.59*y)/(g1^2*g2^2*g3^2) - (t^6.7*y)/(g1^8*g2^3*g3^3) + g1^2*g2^2*g3^2*t^7.41*y - (t^7.77*y)/(g1^6*g2^6*g3^6) + (t^8.29*y)/(g1^10*g2^5*g3^5) + (g2^4*g3^4*t^8.45*y)/g1^6 + (g3^4*t^8.46*y)/(g1*g2) + (g2^4*t^8.47*y)/(g1*g3) + (g1^4*t^8.48*y)/(g2*g3) - (t^8.81*y)/(g1^14*g2^4*g3^4) + (g2^5*g3^5*t^8.96*y)/g1^10 + (g3^5*t^8.97*y)/g1^5 + (g2^10*t^8.98*y)/g1^10 + (2*g2^5*t^8.99*y)/g1^5 + (g3^5*t^8.99*y)/g2^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55658 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ 0.8483 1.0329 0.8213 [X:[], M:[0.6996], q:[0.7347, 0.7347, 0.7347], qb:[0.5657, 0.5539, 0.5539], phi:[0.5306]] t^2.1 + t^3.18 + t^3.32 + 2*t^3.36 + 6*t^3.87 + 2*t^3.9 + t^4.2 + 3*t^4.41 + 3*t^4.92 + 2*t^4.95 + t^4.99 + t^5.28 + t^5.42 + 2*t^5.46 + 4*t^5.96 - 6*t^6. - t^4.59/y - t^4.59*y detail