Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55741 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ + $ q_2\tilde{q}_2$ | 0.694 | 0.8411 | 0.8251 | [X:[], M:[0.6741], q:[0.5261, 1.0684, 0.7973], qb:[0.5287, 0.9316, 0.5261], phi:[0.4055]] | [X:[], M:[[-6, -1, -1]], q:[[2, 7, 2], [0, -5, 0], [1, 1, 1]], qb:[[5, 0, 0], [0, 5, 0], [0, 0, 5]], phi:[[-2, -2, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_1q_3$, $ q_3\tilde{q}_3$, $ M_1^2$, $ q_1\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1q_1\tilde{q}_3$, $ M_1q_1\tilde{q}_1$, $ q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_3$ | . | -5 | t^2.02 + t^2.43 + 3*t^3.16 + 2*t^3.97 + t^4.04 + 3*t^4.37 + 2*t^4.38 + t^4.39 + t^4.46 + t^4.87 + t^5.18 + 2*t^5.19 + t^5.59 + 2*t^5.6 - 5*t^6. - 2*t^6.01 + t^6.07 + t^6.31 + 2*t^6.32 + 3*t^6.33 + 5*t^6.4 + t^6.48 + 2*t^6.81 + t^6.82 + t^6.89 + 5*t^7.13 + t^7.2 - 6*t^7.22 + t^7.3 + 3*t^7.53 + 10*t^7.54 + 2*t^7.55 + t^7.61 + 2*t^7.62 - 2*t^7.95 - t^7.96 - 4*t^8.02 + t^8.09 + 7*t^8.34 + 3*t^8.35 + 3*t^8.42 - 5*t^8.43 - 2*t^8.44 + t^8.5 + 10*t^8.75 + 5*t^8.76 + 2*t^8.77 + t^8.78 + 3*t^8.83 + 5*t^8.84 + t^8.91 - t^4.22/y - t^6.24/y - t^6.65/y + t^7.46/y + t^7.78/y + t^8.18/y + (3*t^8.19)/y - t^8.26/y + t^8.59/y + (2*t^8.6)/y - t^8.67/y + (2*t^8.99)/y - t^4.22*y - t^6.24*y - t^6.65*y + t^7.46*y + t^7.78*y + t^8.18*y + 3*t^8.19*y - t^8.26*y + t^8.59*y + 2*t^8.6*y - t^8.67*y + 2*t^8.99*y | t^2.02/(g1^6*g2*g3) + t^2.43/(g1^4*g2^4*g3^4) + g1^7*g2^7*g3^2*t^3.16 + g1^5*g3^5*t^3.16 + g1^2*g2^7*g3^7*t^3.16 + g1^3*g2^8*g3^3*t^3.97 + g1*g2*g3^6*t^3.97 + t^4.04/(g1^12*g2^2*g3^2) + g1^2*g2^12*g3^2*t^4.37 + g2^5*g3^5*t^4.37 + (g3^8*t^4.37)/(g1^2*g2^2) + g1^5*g2^5*t^4.38 + (g1^3*g3^3*t^4.38)/g2^2 + (g1^8*t^4.39)/(g2^2*g3^2) + t^4.46/(g1^10*g2^5*g3^5) + t^4.87/(g1^8*g2^8*g3^8) + (g2^6*g3^6*t^5.18)/g1^4 + g1*g2^6*g3*t^5.19 + (g3^4*t^5.19)/(g1*g2) + (g2^3*g3^3*t^5.59)/g1^2 + (g1^3*g2^3*t^5.6)/g3^2 + (g1*g3*t^5.6)/g2^4 - 3*t^6. - (g1^2*g2^7*t^6.)/g3^3 - (g3^3*t^6.)/(g1^2*g2^7) - (g1^5*t^6.01)/g3^5 - (g1^3*t^6.01)/(g2^7*g3^2) + t^6.07/(g1^18*g2^3*g3^3) + g1^4*g2^14*g3^14*t^6.31 + g1^9*g2^14*g3^9*t^6.32 + g1^7*g2^7*g3^12*t^6.32 + g1^14*g2^14*g3^4*t^6.33 + g1^12*g2^7*g3^7*t^6.33 + g1^10*g3^10*t^6.33 + (g2^4*t^6.4)/(g1*g3) + (g2^11*g3*t^6.4)/g1^4 + (g3^2*t^6.4)/(g1^3*g2^3) + (g2^4*g3^4*t^6.4)/g1^6 + (g3^7*t^6.4)/(g1^8*g2^3) + t^6.48/(g1^16*g2^6*g3^6) + (g2^8*t^6.81)/(g1^2*g3^2) + (g3^4*t^6.81)/(g1^6*g2^6) + (g1^4*t^6.82)/(g2^6*g3^6) + t^6.89/(g1^14*g2^9*g3^9) + g1^10*g2^15*g3^5*t^7.13 + g1^8*g2^8*g3^8*t^7.13 + g1^5*g2^15*g3^10*t^7.13 + g1^6*g2*g3^11*t^7.13 + g1^3*g2^8*g3^13*t^7.13 + (g2^5*g3^5*t^7.2)/g1^10 - (g1^3*t^7.22)/(g2^2*g3^7) - (g2^5*t^7.22)/g3^5 - (g1*t^7.22)/(g2^9*g3^4) - (2*t^7.22)/(g1^2*g2^2*g3^2) - (g3*t^7.22)/(g1^4*g2^9) + t^7.3/(g1^12*g2^12*g3^12) + g1^4*g2^19*g3^9*t^7.53 + g1^2*g2^12*g3^12*t^7.53 + g2^5*g3^15*t^7.53 + g1^12*g2^12*g3^2*t^7.54 + g1^9*g2^19*g3^4*t^7.54 + 2*g1^10*g2^5*g3^5*t^7.54 + 2*g1^7*g2^12*g3^7*t^7.54 + (g1^8*g3^8*t^7.54)/g2^2 + 2*g1^5*g2^5*g3^10*t^7.54 + (g1^3*g3^13*t^7.54)/g2^2 + g1^15*g2^5*t^7.55 + (g1^13*g3^3*t^7.55)/g2^2 + (g2^2*g3^2*t^7.61)/g1^8 + t^7.62/(g1^5*g2^5) + (g2^2*t^7.62)/(g1^3*g3^3) - g1^9*g2^9*g3^4*t^7.95 - g1^7*g2^2*g3^7*t^7.95 - g1^12*g2^2*g3^2*t^7.96 - (g2^6*t^8.02)/(g1^4*g3^4) - (2*t^8.02)/(g1^6*g2*g3) - (g3^2*t^8.02)/(g1^8*g2^8) + t^8.09/(g1^24*g2^4*g3^4) + g1^5*g2^20*g3^5*t^8.34 + 2*g1^3*g2^13*g3^8*t^8.34 + 2*g1*g2^6*g3^11*t^8.34 + (g2^13*g3^13*t^8.34)/g1^2 + (g3^14*t^8.34)/(g1*g2) + g1^8*g2^13*g3^3*t^8.35 + g1^6*g2^6*g3^6*t^8.35 + (g1^4*g3^9*t^8.35)/g2 + (g2^10*t^8.42)/g1^10 + (g2^3*g3^3*t^8.42)/g1^12 + (g3^6*t^8.42)/(g1^14*g2^4) - (g2^3*t^8.43)/(g1^2*g3^7) - (3*t^8.43)/(g1^4*g2^4*g3^4) - t^8.43/(g1^6*g2^11*g3) - (g1*t^8.44)/(g2^4*g3^9) - t^8.44/(g1*g2^11*g3^6) + t^8.5/(g1^22*g2^7*g3^7) + g1^7*g2^17*g3^2*t^8.75 + g1^4*g2^24*g3^4*t^8.75 + g1^5*g2^10*g3^5*t^8.75 + g1^2*g2^17*g3^7*t^8.75 + g1^3*g2^3*g3^8*t^8.75 + 2*g2^10*g3^10*t^8.75 + (g1*g3^11*t^8.75)/g2^4 + (g2^3*g3^13*t^8.75)/g1^2 + (g3^16*t^8.75)/(g1^4*g2^4) + 2*g1^10*g2^10*t^8.76 + g1^8*g2^3*g3^3*t^8.76 + (2*g1^6*g3^6*t^8.76)/g2^4 + (g1^13*g2^3*t^8.77)/g3^2 + (g1^11*g3*t^8.77)/g2^4 + (g1^16*t^8.78)/(g2^4*g3^4) + t^8.83/g1^10 + (g2^7*t^8.83)/(g1^8*g3^3) + (g3^3*t^8.83)/(g1^12*g2^7) + t^8.84/g3^10 + t^8.84/(g1^2*g2^7*g3^7) + t^8.84/(g1^5*g3^5) + t^8.84/(g1^4*g2^14*g3^4) + t^8.84/(g1^7*g2^7*g3^2) + t^8.91/(g1^20*g2^10*g3^10) - t^4.22/(g1^2*g2^2*g3^2*y) - t^6.24/(g1^8*g2^3*g3^3*y) - t^6.65/(g1^6*g2^6*g3^6*y) + t^7.46/(g1^10*g2^5*g3^5*y) + (g1^2*g2^2*g3^2*t^7.78)/y + (g2^6*g3^6*t^8.18)/(g1^4*y) + (g1^4*t^8.19)/(g2*g3*y) + (g1*g2^6*g3*t^8.19)/y + (g3^4*t^8.19)/(g1*g2*y) - t^8.26/(g1^14*g2^4*g3^4*y) + (g2^3*g3^3*t^8.59)/(g1^2*y) + (g1^3*g2^3*t^8.6)/(g3^2*y) + (g1*g3*t^8.6)/(g2^4*y) - t^8.67/(g1^12*g2^7*g3^7*y) + (g2^7*g3^2*t^8.99)/(g1^3*y) + (g3^5*t^8.99)/(g1^5*y) - (t^4.22*y)/(g1^2*g2^2*g3^2) - (t^6.24*y)/(g1^8*g2^3*g3^3) - (t^6.65*y)/(g1^6*g2^6*g3^6) + (t^7.46*y)/(g1^10*g2^5*g3^5) + g1^2*g2^2*g3^2*t^7.78*y + (g2^6*g3^6*t^8.18*y)/g1^4 + (g1^4*t^8.19*y)/(g2*g3) + g1*g2^6*g3*t^8.19*y + (g3^4*t^8.19*y)/(g1*g2) - (t^8.26*y)/(g1^14*g2^4*g3^4) + (g2^3*g3^3*t^8.59*y)/g1^2 + (g1^3*g2^3*t^8.6*y)/g3^2 + (g1*g3*t^8.6*y)/g2^4 - (t^8.67*y)/(g1^12*g2^7*g3^7) + (g2^7*g3^2*t^8.99*y)/g1^3 + (g3^5*t^8.99*y)/g1^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
134 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_2M_3$ | 0.694 | 0.8411 | 0.8251 | [X:[], M:[0.6741, 0.9479, 1.0521], q:[0.7973, 0.5287], qb:[0.5261, 0.5261], phi:[0.4055]] | t^2.02 + t^2.43 + 3*t^3.16 + 2*t^3.97 + t^4.04 + 3*t^4.37 + 2*t^4.38 + t^4.39 + t^4.46 + t^4.87 + t^5.18 + 2*t^5.19 + t^5.59 + 2*t^5.6 - 5*t^6. - t^4.22/y - t^4.22*y | detail |
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55658 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ | 0.8483 | 1.0329 | 0.8213 | [X:[], M:[0.6996], q:[0.7347, 0.7347, 0.7347], qb:[0.5657, 0.5539, 0.5539], phi:[0.5306]] | t^2.1 + t^3.18 + t^3.32 + 2*t^3.36 + 6*t^3.87 + 2*t^3.9 + t^4.2 + 3*t^4.41 + 3*t^4.92 + 2*t^4.95 + t^4.99 + t^5.28 + t^5.42 + 2*t^5.46 + 4*t^5.96 - 6*t^6. - t^4.59/y - t^4.59*y | detail |