Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55798 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ + $ M_2q_2\tilde{q}_1$ 0.8689 1.0729 0.8099 [X:[], M:[0.6935, 0.6872], q:[0.7293, 0.7419, 0.7356], qb:[0.5709, 0.5535, 0.5535], phi:[0.5288]] [X:[], M:[[0, -6, -1, -1], [-1, -5, 0, 0]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_1$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_1q_3$, $ q_1q_2$, $ q_2q_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_1$, $ M_1q_2\tilde{q}_2$ . -6 t^2.06 + t^2.08 + t^3.17 + t^3.32 + 2*t^3.37 + 2*t^3.85 + 2*t^3.87 + 2*t^3.89 + t^3.9 + t^4.12 + t^4.14 + t^4.16 + t^4.39 + t^4.41 + t^4.43 + 3*t^4.91 + 2*t^4.96 + t^5.01 + t^5.23 + t^5.25 + t^5.38 + t^5.4 + 2*t^5.43 + 2*t^5.45 + 2*t^5.91 + 4*t^5.93 + 2*t^5.95 + t^5.96 + 2*t^5.97 - 6*t^6. - t^6.02 - 2*t^6.05 + t^6.18 + t^6.2 + t^6.22 + t^6.24 + t^6.35 + t^6.46 + t^6.48 + 2*t^6.49 - 2*t^6.53 - 2*t^6.57 + t^6.64 + 2*t^6.69 + 3*t^6.75 + 3*t^6.97 + 3*t^6.99 + 2*t^7.02 + 2*t^7.04 + t^7.07 - t^7.11 + 2*t^7.17 + 2*t^7.19 + 2*t^7.21 + 4*t^7.22 + 3*t^7.24 + 3*t^7.26 + 2*t^7.27 + t^7.3 + t^7.31 + t^7.33 + t^7.44 + t^7.46 + t^7.48 + 2*t^7.5 + 2*t^7.52 - 4*t^7.59 - 2*t^7.64 + 3*t^7.7 + 4*t^7.72 + 4*t^7.73 + 6*t^7.75 + 5*t^7.77 + t^7.8 - t^7.84 + 2*t^7.97 + 4*t^7.99 + 4*t^8.01 + t^8.02 + 2*t^8.03 + 2*t^8.05 - 6*t^8.06 - 4*t^8.08 - t^8.1 - 2*t^8.11 + t^8.18 + 3*t^8.23 + 2*t^8.24 + t^8.25 + 2*t^8.26 + t^8.27 + 9*t^8.28 + 4*t^8.3 + 3*t^8.32 + 3*t^8.33 - t^8.35 + 2*t^8.39 + t^8.41 + t^8.43 + t^8.52 + t^8.54 + 2*t^8.56 + 2*t^8.57 - 2*t^8.59 - 2*t^8.61 - 2*t^8.65 + 3*t^8.68 + t^8.7 + t^8.72 + 6*t^8.76 + 6*t^8.78 + 4*t^8.79 + 6*t^8.81 + 3*t^8.83 + 2*t^8.86 + t^8.91 - t^4.59/y - t^6.65/y - t^6.67/y + t^7.14/y + t^7.41/y - t^7.76/y + t^8.23/y + t^8.25/y + t^8.38/y + t^8.4/y + (2*t^8.43)/y + (2*t^8.45)/y + t^8.51/y + t^8.52/y - t^8.71/y - t^8.73/y - t^8.75/y + (2*t^8.91)/y + (4*t^8.93)/y + (4*t^8.95)/y + t^8.96/y + (2*t^8.97)/y + t^8.98/y - t^4.59*y - t^6.65*y - t^6.67*y + t^7.14*y + t^7.41*y - t^7.76*y + t^8.23*y + t^8.25*y + t^8.38*y + t^8.4*y + 2*t^8.43*y + 2*t^8.45*y + t^8.51*y + t^8.52*y - t^8.71*y - t^8.73*y - t^8.75*y + 2*t^8.91*y + 4*t^8.93*y + 4*t^8.95*y + t^8.96*y + 2*t^8.97*y + t^8.98*y t^2.06/(g1*g2^5) + t^2.08/(g2^6*g3*g4) + t^3.17/(g2^4*g3^4*g4^4) + g3^5*g4^5*t^3.32 + g2^5*g3^5*t^3.37 + g2^5*g4^5*t^3.37 + (g2^2*g3^7*g4^2*t^3.85)/g1 + (g2^2*g3^2*g4^7*t^3.85)/g1 + g2*g3^6*g4*t^3.87 + g2*g3*g4^6*t^3.87 + g1*g3^5*t^3.89 + g1*g4^5*t^3.89 + (g2^7*g3^2*g4^2*t^3.9)/g1 + t^4.12/(g1^2*g2^10) + t^4.14/(g1*g2^11*g3*g4) + t^4.16/(g2^12*g3^2*g4^2) + (g2^3*g3^3*g4^3*t^4.39)/g1 + g2^2*g3^2*g4^2*t^4.41 + g1*g2*g3*g4*t^4.43 + (g3^8*t^4.91)/(g2^2*g4^2) + (g3^3*g4^3*t^4.91)/g2^2 + (g4^8*t^4.91)/(g2^2*g3^2) + (g2^3*g3^3*t^4.96)/g4^2 + (g2^3*g4^3*t^4.96)/g3^2 + (g2^8*t^5.01)/(g3^2*g4^2) + t^5.23/(g1*g2^9*g3^4*g4^4) + t^5.25/(g2^10*g3^5*g4^5) + (g3^5*g4^5*t^5.38)/(g1*g2^5) + (g3^4*g4^4*t^5.4)/g2^6 + (g3^5*t^5.43)/g1 + (g4^5*t^5.43)/g1 + (g3^4*t^5.45)/(g2*g4) + (g4^4*t^5.45)/(g2*g3) + (g3^7*g4^2*t^5.91)/(g1^2*g2^3) + (g3^2*g4^7*t^5.91)/(g1^2*g2^3) + (2*g3^6*g4*t^5.93)/(g1*g2^4) + (2*g3*g4^6*t^5.93)/(g1*g2^4) + (g3^5*t^5.95)/g2^5 + (g4^5*t^5.95)/g2^5 + (g2^2*g3^2*g4^2*t^5.96)/g1^2 + (g1*g3^4*t^5.97)/(g2^6*g4) + (g1*g4^4*t^5.97)/(g2^6*g3) - 4*t^6. - (g3^5*t^6.)/g4^5 - (g4^5*t^6.)/g3^5 - (g1*t^6.02)/(g2*g3*g4) - (g2^5*t^6.05)/g3^5 - (g2^5*t^6.05)/g4^5 + t^6.18/(g1^3*g2^15) + t^6.2/(g1^2*g2^16*g3*g4) + t^6.22/(g1*g2^17*g3^2*g4^2) + t^6.24/(g2^18*g3^3*g4^3) + t^6.35/(g2^8*g3^8*g4^8) + (g3^3*g4^3*t^6.46)/(g1^2*g2^2) + (g3^2*g4^2*t^6.48)/(g1*g2^3) + (2*g3*g4*t^6.49)/g2^4 - (g2^2*g3^2*t^6.53)/(g1*g4^3) - (g2^2*g4^2*t^6.53)/(g1*g3^3) - (g1*t^6.57)/g3^5 - (g1*t^6.57)/g4^5 + g3^10*g4^10*t^6.64 + g2^5*g3^10*g4^5*t^6.69 + g2^5*g3^5*g4^10*t^6.69 + g2^10*g3^10*t^6.75 + g2^10*g3^5*g4^5*t^6.75 + g2^10*g4^10*t^6.75 + (g3^8*t^6.97)/(g1*g2^7*g4^2) + (g3^3*g4^3*t^6.97)/(g1*g2^7) + (g4^8*t^6.97)/(g1*g2^7*g3^2) + (g3^7*t^6.99)/(g2^8*g4^3) + (g3^2*g4^2*t^6.99)/g2^8 + (g4^7*t^6.99)/(g2^8*g3^3) + (g3^3*t^7.02)/(g1*g2^2*g4^2) + (g4^3*t^7.02)/(g1*g2^2*g3^2) + (g3^2*t^7.04)/(g2^3*g4^3) + (g4^2*t^7.04)/(g2^3*g3^3) + (g2^3*t^7.07)/(g1*g3^2*g4^2) - (g1*g2*t^7.11)/(g3^4*g4^4) + (g2^2*g3^12*g4^7*t^7.17)/g1 + (g2^2*g3^7*g4^12*t^7.17)/g1 + g2*g3^11*g4^6*t^7.19 + g2*g3^6*g4^11*t^7.19 + g1*g3^10*g4^5*t^7.21 + g1*g3^5*g4^10*t^7.21 + (g2^7*g3^12*g4^2*t^7.22)/g1 + (2*g2^7*g3^7*g4^7*t^7.22)/g1 + (g2^7*g3^2*g4^12*t^7.22)/g1 + g2^6*g3^11*g4*t^7.24 + g2^6*g3^6*g4^6*t^7.24 + g2^6*g3*g4^11*t^7.24 + g1*g2^5*g3^10*t^7.26 + g1*g2^5*g3^5*g4^5*t^7.26 + g1*g2^5*g4^10*t^7.26 + (g2^12*g3^7*g4^2*t^7.27)/g1 + (g2^12*g3^2*g4^7*t^7.27)/g1 + t^7.3/(g1^2*g2^14*g3^4*g4^4) + t^7.31/(g1*g2^15*g3^5*g4^5) + t^7.33/(g2^16*g3^6*g4^6) + (g3^5*g4^5*t^7.44)/(g1^2*g2^10) + (g3^4*g4^4*t^7.46)/(g1*g2^11) + (g3^3*g4^3*t^7.48)/g2^12 + (g3^5*t^7.5)/(g1^2*g2^5) + (g4^5*t^7.5)/(g1^2*g2^5) + (g3^4*t^7.52)/(g1*g2^6*g4) + (g4^4*t^7.52)/(g1*g2^6*g3) - (g3^3*t^7.59)/(g2^2*g4^7) - (2*t^7.59)/(g2^2*g3^2*g4^2) - (g4^3*t^7.59)/(g2^2*g3^7) - (g2^3*t^7.64)/(g3^2*g4^7) - (g2^3*t^7.64)/(g3^7*g4^2) + (g2^4*g3^14*g4^4*t^7.7)/g1^2 + (g2^4*g3^9*g4^9*t^7.7)/g1^2 + (g2^4*g3^4*g4^14*t^7.7)/g1^2 + (g2^3*g3^13*g4^3*t^7.72)/g1 + (2*g2^3*g3^8*g4^8*t^7.72)/g1 + (g2^3*g3^3*g4^13*t^7.72)/g1 + g2^2*g3^12*g4^2*t^7.73 + 2*g2^2*g3^7*g4^7*t^7.73 + g2^2*g3^2*g4^12*t^7.73 + g1*g2*g3^11*g4*t^7.75 + (g2^9*g3^9*g4^4*t^7.75)/g1^2 + 2*g1*g2*g3^6*g4^6*t^7.75 + (g2^9*g3^4*g4^9*t^7.75)/g1^2 + g1*g2*g3*g4^11*t^7.75 + g1^2*g3^10*t^7.77 + (g2^8*g3^8*g4^3*t^7.77)/g1 + g1^2*g3^5*g4^5*t^7.77 + (g2^8*g3^3*g4^8*t^7.77)/g1 + g1^2*g4^10*t^7.77 + (g2^14*g3^4*g4^4*t^7.8)/g1^2 - g2^12*g3^2*g4^2*t^7.84 + (g3^7*g4^2*t^7.97)/(g1^3*g2^8) + (g3^2*g4^7*t^7.97)/(g1^3*g2^8) + (2*g3^6*g4*t^7.99)/(g1^2*g2^9) + (2*g3*g4^6*t^7.99)/(g1^2*g2^9) + (2*g3^5*t^8.01)/(g1*g2^10) + (2*g4^5*t^8.01)/(g1*g2^10) + (g3^2*g4^2*t^8.02)/(g1^3*g2^3) + (g3^4*t^8.03)/(g2^11*g4) + (g4^4*t^8.03)/(g2^11*g3) + (g1*g3^3*t^8.05)/(g2^12*g4^2) + (g1*g4^3*t^8.05)/(g2^12*g3^2) - (4*t^8.06)/(g1*g2^5) - (g3^5*t^8.06)/(g1*g2^5*g4^5) - (g4^5*t^8.06)/(g1*g2^5*g3^5) - (4*t^8.08)/(g2^6*g3*g4) - (g1*t^8.1)/(g2^7*g3^2*g4^2) - t^8.11/(g1*g3^5) - t^8.11/(g1*g4^5) + (g2^4*t^8.18)/(g3^6*g4^6) + (g3^13*g4^3*t^8.23)/g2^2 + (g3^8*g4^8*t^8.23)/g2^2 + (g3^3*g4^13*t^8.23)/g2^2 + (g2^5*g3^10*g4^5*t^8.24)/g1^2 + (g2^5*g3^5*g4^10*t^8.24)/g1^2 + t^8.25/(g1^4*g2^20) + (g2^4*g3^9*g4^4*t^8.26)/g1 + (g2^4*g3^4*g4^9*t^8.26)/g1 + t^8.27/(g1^3*g2^21*g3*g4) + t^8.28/(g1^2*g2^22*g3^2*g4^2) + (g2^3*g3^13*t^8.28)/g4^2 + 3*g2^3*g3^8*g4^3*t^8.28 + 3*g2^3*g3^3*g4^8*t^8.28 + (g2^3*g4^13*t^8.28)/g3^2 + t^8.3/(g1*g2^23*g3^3*g4^3) + g1*g2^2*g3^7*g4^2*t^8.3 + (g2^10*g3^5*g4^5*t^8.3)/g1^2 + g1*g2^2*g3^2*g4^7*t^8.3 + t^8.32/(g2^24*g3^4*g4^4) + g1^2*g2*g3^6*g4*t^8.32 + g1^2*g2*g3*g4^6*t^8.32 + (g2^8*g3^8*t^8.33)/g4^2 + g2^8*g3^3*g4^3*t^8.33 + (g2^8*g4^8*t^8.33)/g3^2 - g1*g2^7*g3^2*g4^2*t^8.35 + (g2^13*g3^3*t^8.39)/g4^2 + (g2^13*g4^3*t^8.39)/g3^2 + t^8.41/(g1*g2^13*g3^8*g4^8) + t^8.43/(g2^14*g3^9*g4^9) + (g3^3*g4^3*t^8.52)/(g1^3*g2^7) + (g3^2*g4^2*t^8.54)/(g1^2*g2^8) + (2*g3*g4*t^8.56)/(g1*g2^9) + (2*t^8.57)/g2^10 - (g3^2*t^8.59)/(g1^2*g2^3*g4^3) - (g4^2*t^8.59)/(g1^2*g2^3*g3^3) - (g3*t^8.61)/(g1*g2^4*g4^4) - (g4*t^8.61)/(g1*g2^4*g3^4) - (g1*t^8.65)/(g2^6*g3*g4^6) - (g1*t^8.65)/(g2^6*g3^6*g4) + t^8.68/g3^10 + t^8.68/g4^10 + t^8.68/(g3^5*g4^5) + (g3^10*g4^10*t^8.7)/(g1*g2^5) + (g3^9*g4^9*t^8.72)/g2^6 + (g3^15*t^8.76)/g1 + (2*g3^10*g4^5*t^8.76)/g1 + (2*g3^5*g4^10*t^8.76)/g1 + (g4^15*t^8.76)/g1 + (g3^14*t^8.78)/(g2*g4) + (2*g3^9*g4^4*t^8.78)/g2 + (2*g3^4*g4^9*t^8.78)/g2 + (g4^14*t^8.78)/(g2*g3) + (g1*g3^13*t^8.79)/(g2^2*g4^2) + (g1*g3^8*g4^3*t^8.79)/g2^2 + (g1*g3^3*g4^8*t^8.79)/g2^2 + (g1*g4^13*t^8.79)/(g2^2*g3^2) + (2*g2^5*g3^10*t^8.81)/g1 + (2*g2^5*g3^5*g4^5*t^8.81)/g1 + (2*g2^5*g4^10*t^8.81)/g1 + (g2^4*g3^9*t^8.83)/g4 + g2^4*g3^4*g4^4*t^8.83 + (g2^4*g4^9*t^8.83)/g3 + (g2^10*g3^5*t^8.86)/g1 + (g2^10*g4^5*t^8.86)/g1 + (g2^15*t^8.91)/g1 - t^4.59/(g2^2*g3^2*g4^2*y) - t^6.65/(g1*g2^7*g3^2*g4^2*y) - t^6.67/(g2^8*g3^3*g4^3*y) + t^7.14/(g1*g2^11*g3*g4*y) + (g2^2*g3^2*g4^2*t^7.41)/y - t^7.76/(g2^6*g3^6*g4^6*y) + t^8.23/(g1*g2^9*g3^4*g4^4*y) + t^8.25/(g2^10*g3^5*g4^5*y) + (g3^5*g4^5*t^8.38)/(g1*g2^5*y) + (g3^4*g4^4*t^8.4)/(g2^6*y) + (g3^5*t^8.43)/(g1*y) + (g4^5*t^8.43)/(g1*y) + (g3^4*t^8.45)/(g2*g4*y) + (g4^4*t^8.45)/(g2*g3*y) + (g2^4*t^8.51)/(g3*g4*y) + (g1*g2^3*t^8.52)/(g3^2*g4^2*y) - t^8.71/(g1^2*g2^12*g3^2*g4^2*y) - t^8.73/(g1*g2^13*g3^3*g4^3*y) - t^8.75/(g2^14*g3^4*g4^4*y) + (g3^7*g4^2*t^8.91)/(g1^2*g2^3*y) + (g3^2*g4^7*t^8.91)/(g1^2*g2^3*y) + (2*g3^6*g4*t^8.93)/(g1*g2^4*y) + (2*g3*g4^6*t^8.93)/(g1*g2^4*y) + (2*g3^5*t^8.95)/(g2^5*y) + (2*g4^5*t^8.95)/(g2^5*y) + (g2^2*g3^2*g4^2*t^8.96)/(g1^2*y) + (g1*g3^4*t^8.97)/(g2^6*g4*y) + (g1*g4^4*t^8.97)/(g2^6*g3*y) + (g2*g3*g4*t^8.98)/(g1*y) - (t^4.59*y)/(g2^2*g3^2*g4^2) - (t^6.65*y)/(g1*g2^7*g3^2*g4^2) - (t^6.67*y)/(g2^8*g3^3*g4^3) + (t^7.14*y)/(g1*g2^11*g3*g4) + g2^2*g3^2*g4^2*t^7.41*y - (t^7.76*y)/(g2^6*g3^6*g4^6) + (t^8.23*y)/(g1*g2^9*g3^4*g4^4) + (t^8.25*y)/(g2^10*g3^5*g4^5) + (g3^5*g4^5*t^8.38*y)/(g1*g2^5) + (g3^4*g4^4*t^8.4*y)/g2^6 + (g3^5*t^8.43*y)/g1 + (g4^5*t^8.43*y)/g1 + (g3^4*t^8.45*y)/(g2*g4) + (g4^4*t^8.45*y)/(g2*g3) + (g2^4*t^8.51*y)/(g3*g4) + (g1*g2^3*t^8.52*y)/(g3^2*g4^2) - (t^8.71*y)/(g1^2*g2^12*g3^2*g4^2) - (t^8.73*y)/(g1*g2^13*g3^3*g4^3) - (t^8.75*y)/(g2^14*g3^4*g4^4) + (g3^7*g4^2*t^8.91*y)/(g1^2*g2^3) + (g3^2*g4^7*t^8.91*y)/(g1^2*g2^3) + (2*g3^6*g4*t^8.93*y)/(g1*g2^4) + (2*g3*g4^6*t^8.93*y)/(g1*g2^4) + (2*g3^5*t^8.95*y)/g2^5 + (2*g4^5*t^8.95*y)/g2^5 + (g2^2*g3^2*g4^2*t^8.96*y)/g1^2 + (g1*g3^4*t^8.97*y)/(g2^6*g4) + (g1*g4^4*t^8.97*y)/(g2^6*g3) + (g2*g3*g4*t^8.98*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55658 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ M_1q_3\tilde{q}_1$ 0.8483 1.0329 0.8213 [X:[], M:[0.6996], q:[0.7347, 0.7347, 0.7347], qb:[0.5657, 0.5539, 0.5539], phi:[0.5306]] t^2.1 + t^3.18 + t^3.32 + 2*t^3.36 + 6*t^3.87 + 2*t^3.9 + t^4.2 + 3*t^4.41 + 3*t^4.92 + 2*t^4.95 + t^4.99 + t^5.28 + t^5.42 + 2*t^5.46 + 4*t^5.96 - 6*t^6. - t^4.59/y - t^4.59*y detail