Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55599 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ 0.8824 1.0853 0.813 [X:[], M:[0.8549, 0.7609], q:[0.7137, 0.6196, 0.6196], qb:[0.5856, 0.5856, 0.5856], phi:[0.5726]] [X:[], M:[[4, 4, 4, 4, 4], [-7, -7, 0, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$ . -13 t^2.28 + t^2.56 + 3*t^3.51 + 6*t^3.62 + 3*t^3.9 + 2*t^4. + t^4.57 + t^4.85 + t^5.13 + 6*t^5.23 + 6*t^5.33 + 3*t^5.44 + 3*t^5.8 - 13*t^6. + 3*t^6.08 - 6*t^6.1 + 9*t^6.18 - 3*t^6.38 + 3*t^6.46 + 2*t^6.56 + t^6.85 + 6*t^7.03 + 17*t^7.13 + 18*t^7.23 - 3*t^7.33 + 9*t^7.41 - 2*t^7.44 + 24*t^7.51 + 9*t^7.62 + t^7.69 - 9*t^7.72 + 6*t^7.8 - 6*t^7.82 + 6*t^7.9 + 3*t^8. + 3*t^8.08 - 3*t^8.18 - 12*t^8.28 + 3*t^8.36 + 3*t^8.46 + 6*t^8.49 - 14*t^8.56 + 3*t^8.64 - 9*t^8.67 + 6*t^8.74 + 18*t^8.75 + 36*t^8.85 + 24*t^8.95 - t^4.72/y - t^7./y + t^7.85/y + t^8.44/y + (3*t^8.8)/y + (6*t^8.9)/y - t^4.72*y - t^7.*y + t^7.85*y + t^8.44*y + 3*t^8.8*y + 6*t^8.9*y t^2.28/(g1^7*g2^7) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.56 + g3^7*g4^7*t^3.51 + g3^7*g5^7*t^3.51 + g4^7*g5^7*t^3.51 + g1^7*g3^7*t^3.62 + g2^7*g3^7*t^3.62 + g1^7*g4^7*t^3.62 + g2^7*g4^7*t^3.62 + g1^7*g5^7*t^3.62 + g2^7*g5^7*t^3.62 + g1*g2*g3^8*g4*g5*t^3.9 + g1*g2*g3*g4^8*g5*t^3.9 + g1*g2*g3*g4*g5^8*t^3.9 + g1^8*g2*g3*g4*g5*t^4. + g1*g2^8*g3*g4*g5*t^4. + t^4.57/(g1^14*g2^14) + (g3^4*g4^4*g5^4*t^4.85)/(g1^3*g2^3) + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.13 + (g3^12*t^5.23)/(g1^2*g2^2*g4^2*g5^2) + (g3^5*g4^5*t^5.23)/(g1^2*g2^2*g5^2) + (g4^12*t^5.23)/(g1^2*g2^2*g3^2*g5^2) + (g3^5*g5^5*t^5.23)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.23)/(g1^2*g2^2*g3^2) + (g5^12*t^5.23)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g3^5*t^5.33)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.33)/(g1^2*g4^2*g5^2) + (g1^5*g4^5*t^5.33)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.33)/(g1^2*g3^2*g5^2) + (g1^5*g5^5*t^5.33)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.33)/(g1^2*g3^2*g4^2) + (g1^12*t^5.44)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.44)/(g3^2*g4^2*g5^2) + (g2^12*t^5.44)/(g1^2*g3^2*g4^2*g5^2) + (g3^7*g4^7*t^5.8)/(g1^7*g2^7) + (g3^7*g5^7*t^5.8)/(g1^7*g2^7) + (g4^7*g5^7*t^5.8)/(g1^7*g2^7) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g3^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.08 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.08 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.08 - (g1^7*t^6.1)/g3^7 - (g2^7*t^6.1)/g3^7 - (g1^7*t^6.1)/g4^7 - (g2^7*t^6.1)/g4^7 - (g1^7*t^6.1)/g5^7 - (g2^7*t^6.1)/g5^7 + (g3^8*g4*g5*t^6.18)/(g1^6*g2^6) + (g3*g4^8*g5*t^6.18)/(g1^6*g2^6) + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.18 + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.18 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.18 + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.18 + (g3*g4*g5^8*t^6.18)/(g1^6*g2^6) + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.18 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.18 - (g1*g2*g3*g4*t^6.38)/g5^6 - (g1*g2*g3*g5*t^6.38)/g4^6 - (g1*g2*g4*g5*t^6.38)/g3^6 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.46 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.46 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.46 + g1^12*g2^5*g3^5*g4^5*g5^5*t^6.56 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.56 + t^6.85/(g1^21*g2^21) + g3^14*g4^14*t^7.03 + g3^14*g4^7*g5^7*t^7.03 + g3^7*g4^14*g5^7*t^7.03 + g3^14*g5^14*t^7.03 + g3^7*g4^7*g5^14*t^7.03 + g4^14*g5^14*t^7.03 + g1^7*g3^14*g4^7*t^7.13 + g2^7*g3^14*g4^7*t^7.13 + g1^7*g3^7*g4^14*t^7.13 + g2^7*g3^7*g4^14*t^7.13 + (g3^4*g4^4*g5^4*t^7.13)/(g1^10*g2^10) + g1^7*g3^14*g5^7*t^7.13 + g2^7*g3^14*g5^7*t^7.13 + 2*g1^7*g3^7*g4^7*g5^7*t^7.13 + 2*g2^7*g3^7*g4^7*g5^7*t^7.13 + g1^7*g4^14*g5^7*t^7.13 + g2^7*g4^14*g5^7*t^7.13 + g1^7*g3^7*g5^14*t^7.13 + g2^7*g3^7*g5^14*t^7.13 + g1^7*g4^7*g5^14*t^7.13 + g2^7*g4^7*g5^14*t^7.13 + g1^14*g3^14*t^7.23 + g1^7*g2^7*g3^14*t^7.23 + g2^14*g3^14*t^7.23 + g1^14*g3^7*g4^7*t^7.23 + g1^7*g2^7*g3^7*g4^7*t^7.23 + g2^14*g3^7*g4^7*t^7.23 + g1^14*g4^14*t^7.23 + g1^7*g2^7*g4^14*t^7.23 + g2^14*g4^14*t^7.23 + g1^14*g3^7*g5^7*t^7.23 + g1^7*g2^7*g3^7*g5^7*t^7.23 + g2^14*g3^7*g5^7*t^7.23 + g1^14*g4^7*g5^7*t^7.23 + g1^7*g2^7*g4^7*g5^7*t^7.23 + g2^14*g4^7*g5^7*t^7.23 + g1^14*g5^14*t^7.23 + g1^7*g2^7*g5^14*t^7.23 + g2^14*g5^14*t^7.23 - (g3^4*t^7.33)/(g1^3*g2^3*g4^3*g5^3) - (g4^4*t^7.33)/(g1^3*g2^3*g3^3*g5^3) - (g5^4*t^7.33)/(g1^3*g2^3*g3^3*g4^3) + g1*g2*g3^15*g4^8*g5*t^7.41 + g1*g2*g3^8*g4^15*g5*t^7.41 + g1*g2*g3^15*g4*g5^8*t^7.41 + 3*g1*g2*g3^8*g4^8*g5^8*t^7.41 + g1*g2*g3*g4^15*g5^8*t^7.41 + g1*g2*g3^8*g4*g5^15*t^7.41 + g1*g2*g3*g4^8*g5^15*t^7.41 - (g1^4*t^7.44)/(g2^3*g3^3*g4^3*g5^3) - (g2^4*t^7.44)/(g1^3*g3^3*g4^3*g5^3) + (g3^12*t^7.51)/(g1^9*g2^9*g4^2*g5^2) + (g3^5*g4^5*t^7.51)/(g1^9*g2^9*g5^2) + (g4^12*t^7.51)/(g1^9*g2^9*g3^2*g5^2) + g1^8*g2*g3^15*g4*g5*t^7.51 + g1*g2^8*g3^15*g4*g5*t^7.51 + 2*g1^8*g2*g3^8*g4^8*g5*t^7.51 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.51 + g1^8*g2*g3*g4^15*g5*t^7.51 + g1*g2^8*g3*g4^15*g5*t^7.51 + (g3^5*g5^5*t^7.51)/(g1^9*g2^9*g4^2) + (g4^5*g5^5*t^7.51)/(g1^9*g2^9*g3^2) + 2*g1^8*g2*g3^8*g4*g5^8*t^7.51 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.51 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.51 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.51 + (g5^12*t^7.51)/(g1^9*g2^9*g3^2*g4^2) + g1^8*g2*g3*g4*g5^15*t^7.51 + g1*g2^8*g3*g4*g5^15*t^7.51 + g1^15*g2*g3^8*g4*g5*t^7.62 + g1^8*g2^8*g3^8*g4*g5*t^7.62 + g1*g2^15*g3^8*g4*g5*t^7.62 + g1^15*g2*g3*g4^8*g5*t^7.62 + g1^8*g2^8*g3*g4^8*g5*t^7.62 + g1*g2^15*g3*g4^8*g5*t^7.62 + g1^15*g2*g3*g4*g5^8*t^7.62 + g1^8*g2^8*g3*g4*g5^8*t^7.62 + g1*g2^15*g3*g4*g5^8*t^7.62 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.69 - (g3^5*t^7.72)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.72)/(g1^2*g2^2*g3^2*g5^9) - (g3^5*t^7.72)/(g1^2*g2^2*g4^9*g5^2) - (3*t^7.72)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g4^5*t^7.72)/(g1^2*g2^2*g3^9*g5^2) - (g5^5*t^7.72)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.72)/(g1^2*g2^2*g3^9*g4^2) + g1^2*g2^2*g3^16*g4^2*g5^2*t^7.8 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.8 + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.8 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.8 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.8 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.8 - (g1^5*t^7.82)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.82)/(g1^2*g3^2*g4^2*g5^9) - (g1^5*t^7.82)/(g2^2*g3^2*g4^9*g5^2) - (g2^5*t^7.82)/(g1^2*g3^2*g4^9*g5^2) - (g1^5*t^7.82)/(g2^2*g3^9*g4^2*g5^2) - (g2^5*t^7.82)/(g1^2*g3^9*g4^2*g5^2) + g1^9*g2^2*g3^9*g4^2*g5^2*t^7.9 + g1^2*g2^9*g3^9*g4^2*g5^2*t^7.9 + g1^9*g2^2*g3^2*g4^9*g5^2*t^7.9 + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.9 + g1^9*g2^2*g3^2*g4^2*g5^9*t^7.9 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.9 + g1^16*g2^2*g3^2*g4^2*g5^2*t^8. + g1^9*g2^9*g3^2*g4^2*g5^2*t^8. + g1^2*g2^16*g3^2*g4^2*g5^2*t^8. + (g3^7*g4^7*t^8.08)/(g1^14*g2^14) + (g3^7*g5^7*t^8.08)/(g1^14*g2^14) + (g4^7*g5^7*t^8.08)/(g1^14*g2^14) - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.18 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.18 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.18 - (4*t^8.28)/(g1^7*g2^7) - (g3^7*t^8.28)/(g1^7*g2^7*g4^7) - (g4^7*t^8.28)/(g1^7*g2^7*g3^7) - (g3^7*t^8.28)/(g1^7*g2^7*g5^7) - (g4^7*t^8.28)/(g1^7*g2^7*g5^7) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.28 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.28 - (g5^7*t^8.28)/(g1^7*g2^7*g3^7) - (g5^7*t^8.28)/(g1^7*g2^7*g4^7) + (g3^11*g4^11*g5^4*t^8.36)/(g1^3*g2^3) + (g3^11*g4^4*g5^11*t^8.36)/(g1^3*g2^3) + (g3^4*g4^11*g5^11*t^8.36)/(g1^3*g2^3) + (g3^8*g4*g5*t^8.46)/(g1^13*g2^13) + (g3*g4^8*g5*t^8.46)/(g1^13*g2^13) + (g3*g4*g5^8*t^8.46)/(g1^13*g2^13) + t^8.49/g3^14 + t^8.49/g4^14 + t^8.49/(g3^7*g4^7) + t^8.49/g5^14 + t^8.49/(g3^7*g5^7) + t^8.49/(g4^7*g5^7) - (g1^4*g2^4*g3^11*g4^4*t^8.56)/g5^3 - (g1^4*g2^4*g3^4*g4^11*t^8.56)/g5^3 - (g1^4*g2^4*g3^11*g5^4*t^8.56)/g4^3 - (g1^11*g3^4*g4^4*g5^4*t^8.56)/g2^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.56 - (g2^11*g3^4*g4^4*g5^4*t^8.56)/g1^3 - (g1^4*g2^4*g4^11*g5^4*t^8.56)/g3^3 - (g1^4*g2^4*g3^4*g5^11*t^8.56)/g4^3 - (g1^4*g2^4*g4^4*g5^11*t^8.56)/g3^3 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.64 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.64 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.64 - (g3*g4*t^8.67)/(g1^6*g2^6*g5^6) - (g1^11*g2^4*g3^4*g4^4*t^8.67)/g5^3 - (g1^4*g2^11*g3^4*g4^4*t^8.67)/g5^3 - (g3*g5*t^8.67)/(g1^6*g2^6*g4^6) - (g4*g5*t^8.67)/(g1^6*g2^6*g3^6) - (g1^11*g2^4*g3^4*g5^4*t^8.67)/g4^3 - (g1^4*g2^11*g3^4*g5^4*t^8.67)/g4^3 - (g1^11*g2^4*g4^4*g5^4*t^8.67)/g3^3 - (g1^4*g2^11*g4^4*g5^4*t^8.67)/g3^3 + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.74 + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.74 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.74 + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.74 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.74 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.74 + (g3^19*g4^5*t^8.75)/(g1^2*g2^2*g5^2) + (g3^12*g4^12*t^8.75)/(g1^2*g2^2*g5^2) + (g3^5*g4^19*t^8.75)/(g1^2*g2^2*g5^2) + (g3^19*g5^5*t^8.75)/(g1^2*g2^2*g4^2) + (3*g3^12*g4^5*g5^5*t^8.75)/(g1^2*g2^2) + (3*g3^5*g4^12*g5^5*t^8.75)/(g1^2*g2^2) + (g4^19*g5^5*t^8.75)/(g1^2*g2^2*g3^2) + (g3^12*g5^12*t^8.75)/(g1^2*g2^2*g4^2) + (3*g3^5*g4^5*g5^12*t^8.75)/(g1^2*g2^2) + (g4^12*g5^12*t^8.75)/(g1^2*g2^2*g3^2) + (g3^5*g5^19*t^8.75)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.75)/(g1^2*g2^2*g3^2) + (g1^5*g3^19*t^8.85)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.85)/(g1^2*g4^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.85)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.85)/(g1^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.85)/(g2^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.85)/(g1^2*g5^2) + (g1^5*g4^19*t^8.85)/(g2^2*g3^2*g5^2) + (g2^5*g4^19*t^8.85)/(g1^2*g3^2*g5^2) + (2*g1^5*g3^12*g5^5*t^8.85)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.85)/(g1^2*g4^2) + (3*g1^5*g3^5*g4^5*g5^5*t^8.85)/g2^2 + (3*g2^5*g3^5*g4^5*g5^5*t^8.85)/g1^2 + (2*g1^5*g4^12*g5^5*t^8.85)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.85)/(g1^2*g3^2) + (2*g1^5*g3^5*g5^12*t^8.85)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.85)/(g1^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.85)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.85)/(g1^2*g3^2) + (g1^5*g5^19*t^8.85)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.85)/(g1^2*g3^2*g4^2) + (g1^12*g3^12*t^8.95)/(g2^2*g4^2*g5^2) + (g1^5*g2^5*g3^12*t^8.95)/(g4^2*g5^2) + (g2^12*g3^12*t^8.95)/(g1^2*g4^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.95)/(g2^2*g5^2) + (g1^5*g2^5*g3^5*g4^5*t^8.95)/g5^2 + (2*g2^12*g3^5*g4^5*t^8.95)/(g1^2*g5^2) + (g1^12*g4^12*t^8.95)/(g2^2*g3^2*g5^2) + (g1^5*g2^5*g4^12*t^8.95)/(g3^2*g5^2) + (g2^12*g4^12*t^8.95)/(g1^2*g3^2*g5^2) + (2*g1^12*g3^5*g5^5*t^8.95)/(g2^2*g4^2) + (g1^5*g2^5*g3^5*g5^5*t^8.95)/g4^2 + (2*g2^12*g3^5*g5^5*t^8.95)/(g1^2*g4^2) + (2*g1^12*g4^5*g5^5*t^8.95)/(g2^2*g3^2) + (g1^5*g2^5*g4^5*g5^5*t^8.95)/g3^2 + (2*g2^12*g4^5*g5^5*t^8.95)/(g1^2*g3^2) + (g1^12*g5^12*t^8.95)/(g2^2*g3^2*g4^2) + (g1^5*g2^5*g5^12*t^8.95)/(g3^2*g4^2) + (g2^12*g5^12*t^8.95)/(g1^2*g3^2*g4^2) - t^4.72/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^7./(g1^9*g2^9*g3^2*g4^2*g5^2*y) + (g3^4*g4^4*g5^4*t^7.85)/(g1^3*g2^3*y) + (g1^5*g2^5*t^8.44)/(g3^2*g4^2*g5^2*y) + (g3^7*g4^7*t^8.8)/(g1^7*g2^7*y) + (g3^7*g5^7*t^8.8)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.8)/(g1^7*g2^7*y) + (g3^7*t^8.9)/(g1^7*y) + (g3^7*t^8.9)/(g2^7*y) + (g4^7*t^8.9)/(g1^7*y) + (g4^7*t^8.9)/(g2^7*y) + (g5^7*t^8.9)/(g1^7*y) + (g5^7*t^8.9)/(g2^7*y) - (t^4.72*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^7.*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (g3^4*g4^4*g5^4*t^7.85*y)/(g1^3*g2^3) + (g1^5*g2^5*t^8.44*y)/(g3^2*g4^2*g5^2) + (g3^7*g4^7*t^8.8*y)/(g1^7*g2^7) + (g3^7*g5^7*t^8.8*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.8*y)/(g1^7*g2^7) + (g3^7*t^8.9*y)/g1^7 + (g3^7*t^8.9*y)/g2^7 + (g4^7*t^8.9*y)/g1^7 + (g4^7*t^8.9*y)/g2^7 + (g5^7*t^8.9*y)/g1^7 + (g5^7*t^8.9*y)/g2^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55760 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ + $ M_1^2$ 0.8639 1.0397 0.831 [X:[], M:[1.0, 0.6881], q:[0.75, 0.6559, 0.6559], qb:[0.646, 0.646, 0.646], phi:[0.5]] t^2.06 + t^3. + 3*t^3.88 + 6*t^3.91 + t^4.13 + 3*t^4.19 + 2*t^4.22 + t^5.06 + 6*t^5.38 + 6*t^5.41 + 3*t^5.44 + 3*t^5.94 - 12*t^6. - t^4.5/y - t^4.5*y detail
55716 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ + $ M_3q_2\tilde{q}_1$ 0.9005 1.1167 0.8064 [X:[], M:[0.8701, 0.7482, 0.7482], q:[0.7175, 0.6418, 0.6099], qb:[0.6099, 0.5805, 0.5805], phi:[0.565]] 2*t^2.24 + t^2.61 + t^3.48 + 4*t^3.57 + t^3.66 + 2*t^3.67 + 2*t^3.89 + 2*t^3.98 + t^4.08 + 3*t^4.49 + 2*t^4.85 + 3*t^5.18 + t^5.22 + 4*t^5.27 + 3*t^5.35 + 2*t^5.36 + 2*t^5.45 + t^5.55 + 2*t^5.73 + 6*t^5.82 - 9*t^6. - t^4.69/y - t^4.69*y detail
55759 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ + $ M_3\tilde{q}_1\tilde{q}_2$ 0.899 1.1107 0.8094 [X:[], M:[0.8775, 0.7712, 0.7712], q:[0.7194, 0.6144, 0.6144], qb:[0.6144, 0.6144, 0.578], phi:[0.5613]] 2*t^2.31 + t^2.63 + 4*t^3.58 + 4*t^3.69 + t^3.89 + 4*t^4. + 3*t^4.63 + 2*t^4.95 + t^5.15 + 5*t^5.26 + 10*t^5.37 + 4*t^5.89 - 9*t^6. - t^4.68/y - t^4.68*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55442 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ 0.865 1.0573 0.8182 [X:[], M:[0.8356], q:[0.7089, 0.5925, 0.5925], qb:[0.5925, 0.5925, 0.5925], phi:[0.5822]] t^2.51 + 10*t^3.55 + 5*t^3.9 + t^5.01 + 15*t^5.3 - 25*t^6. - t^4.75/y - t^4.75*y detail