Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55716 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{2}q_{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 0.9005 | 1.1167 | 0.8064 | [M:[0.8701, 0.7482, 0.7482], q:[0.7175, 0.6418, 0.6099], qb:[0.6099, 0.5805, 0.5805], phi:[0.565]] | [M:[[4, 4, 4, 4, 4], [-7, -7, 0, 0, 0], [-7, 0, -7, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{3}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{3}q_{3}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$ | ${}$ | -9 | 2*t^2.245 + t^2.61 + t^3.483 + 4*t^3.571 + t^3.66 + 2*t^3.667 + 2*t^3.894 + 2*t^3.982 + t^4.078 + 3*t^4.489 + 2*t^4.855 + 3*t^5.178 + t^5.221 + 4*t^5.266 + 3*t^5.355 + 2*t^5.362 + 2*t^5.45 + t^5.546 + 2*t^5.728 + 6*t^5.816 - 9*t^6. - 4*t^6.088 + t^6.093 - 2*t^6.096 + 4*t^6.139 + 4*t^6.182 - 2*t^6.184 + 3*t^6.227 + t^6.27 + 2*t^6.277 - 2*t^6.411 + 2*t^6.504 + 2*t^6.593 + t^6.688 + 4*t^6.734 + t^6.966 + 4*t^7.054 + 3*t^7.1 + 10*t^7.142 + 2*t^7.15 + 4*t^7.231 + 6*t^7.238 - 2*t^7.284 + t^7.319 + 3*t^7.334 - 2*t^7.372 + 2*t^7.377 + 6*t^7.422 + 10*t^7.465 - t^7.468 + 6*t^7.511 + 8*t^7.554 + 4*t^7.561 + 4*t^7.599 + 2*t^7.642 + 4*t^7.649 - 4*t^7.695 + 2*t^7.745 - 4*t^7.783 + 3*t^7.788 + t^7.831 + 4*t^7.876 - 2*t^7.879 + 3*t^7.965 + 5*t^7.972 + 2*t^8.06 + 8*t^8.061 - t^8.156 - 2*t^8.199 - 16*t^8.245 - 2*t^8.288 - 6*t^8.333 + 2*t^8.338 - t^8.34 + 5*t^8.383 + 6*t^8.426 + 4*t^8.472 + 3*t^8.517 - t^8.567 - 10*t^8.61 - 4*t^8.656 + 3*t^8.661 - 4*t^8.699 + t^8.703 - 2*t^8.706 + 16*t^8.749 + 4*t^8.792 - 2*t^8.794 + 18*t^8.837 + 6*t^8.845 + t^8.88 + 2*t^8.887 + 12*t^8.926 + 8*t^8.933 + 5*t^8.979 - t^4.695/y - (2*t^6.94)/y + t^7.489/y + (2*t^7.855)/y + (2*t^8.45)/y + (2*t^8.728)/y + (8*t^8.816)/y + (2*t^8.904)/y + (4*t^8.912)/y - t^4.695*y - 2*t^6.94*y + t^7.489*y + 2*t^7.855*y + 2*t^8.45*y + 2*t^8.728*y + 8*t^8.816*y + 2*t^8.904*y + 4*t^8.912*y | t^2.245/(g1^7*g2^7) + t^2.245/(g1^7*g3^7) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.61 + g4^7*g5^7*t^3.483 + g2^7*g4^7*t^3.571 + g3^7*g4^7*t^3.571 + g2^7*g5^7*t^3.571 + g3^7*g5^7*t^3.571 + g2^7*g3^7*t^3.66 + g1^7*g4^7*t^3.667 + g1^7*g5^7*t^3.667 + g1*g2*g3*g4^8*g5*t^3.894 + g1*g2*g3*g4*g5^8*t^3.894 + g1*g2^8*g3*g4*g5*t^3.982 + g1*g2*g3^8*g4*g5*t^3.982 + g1^8*g2*g3*g4*g5*t^4.078 + t^4.489/(g1^14*g2^14) + t^4.489/(g1^14*g3^14) + t^4.489/(g1^14*g2^7*g3^7) + (g2^4*g4^4*g5^4*t^4.855)/(g1^3*g3^3) + (g3^4*g4^4*g5^4*t^4.855)/(g1^3*g2^3) + (g4^12*t^5.178)/(g1^2*g2^2*g3^2*g5^2) + (g4^5*g5^5*t^5.178)/(g1^2*g2^2*g3^2) + (g5^12*t^5.178)/(g1^2*g2^2*g3^2*g4^2) + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.221 + (g2^5*g4^5*t^5.266)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.266)/(g1^2*g2^2*g5^2) + (g2^5*g5^5*t^5.266)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.266)/(g1^2*g2^2*g4^2) + (g2^12*t^5.355)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.355)/(g1^2*g4^2*g5^2) + (g3^12*t^5.355)/(g1^2*g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.362)/(g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.362)/(g2^2*g3^2*g4^2) + (g1^5*g2^5*t^5.45)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.45)/(g2^2*g4^2*g5^2) + (g1^12*t^5.546)/(g2^2*g3^2*g4^2*g5^2) + (g4^7*g5^7*t^5.728)/(g1^7*g2^7) + (g4^7*g5^7*t^5.728)/(g1^7*g3^7) + (g4^7*t^5.816)/g1^7 + (g2^7*g4^7*t^5.816)/(g1^7*g3^7) + (g3^7*g4^7*t^5.816)/(g1^7*g2^7) + (g5^7*t^5.816)/g1^7 + (g2^7*g5^7*t^5.816)/(g1^7*g3^7) + (g3^7*g5^7*t^5.816)/(g1^7*g2^7) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g4^7 - (g2^7*t^6.088)/g4^7 - (g3^7*t^6.088)/g4^7 - (g2^7*t^6.088)/g5^7 - (g3^7*t^6.088)/g5^7 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.093 - (g1^7*t^6.096)/g2^7 - (g1^7*t^6.096)/g3^7 + (g2*g4^8*g5*t^6.139)/(g1^6*g3^6) + (g3*g4^8*g5*t^6.139)/(g1^6*g2^6) + (g2*g4*g5^8*t^6.139)/(g1^6*g3^6) + (g3*g4*g5^8*t^6.139)/(g1^6*g2^6) + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.182 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.182 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.182 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.182 - (g1^7*t^6.184)/g4^7 - (g1^7*t^6.184)/g5^7 + (g2^8*g4*g5*t^6.227)/(g1^6*g3^6) + (g2*g3*g4*g5*t^6.227)/g1^6 + (g3^8*g4*g5*t^6.227)/(g1^6*g2^6) + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.27 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.277 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.277 - (g1*g2*g3*g4*t^6.411)/g5^6 - (g1*g2*g3*g5*t^6.411)/g4^6 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.504 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.504 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.593 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.593 + g1^12*g2^5*g3^5*g4^5*g5^5*t^6.688 + t^6.734/(g1^21*g2^21) + t^6.734/(g1^21*g3^21) + t^6.734/(g1^21*g2^7*g3^14) + t^6.734/(g1^21*g2^14*g3^7) + g4^14*g5^14*t^6.966 + g2^7*g4^14*g5^7*t^7.054 + g3^7*g4^14*g5^7*t^7.054 + g2^7*g4^7*g5^14*t^7.054 + g3^7*g4^7*g5^14*t^7.054 + (g2^4*g4^4*g5^4*t^7.1)/(g1^10*g3^10) + (g4^4*g5^4*t^7.1)/(g1^10*g2^3*g3^3) + (g3^4*g4^4*g5^4*t^7.1)/(g1^10*g2^10) + g2^14*g4^14*t^7.142 + g2^7*g3^7*g4^14*t^7.142 + g3^14*g4^14*t^7.142 + g2^14*g4^7*g5^7*t^7.142 + 2*g2^7*g3^7*g4^7*g5^7*t^7.142 + g3^14*g4^7*g5^7*t^7.142 + g2^14*g5^14*t^7.142 + g2^7*g3^7*g5^14*t^7.142 + g3^14*g5^14*t^7.142 + g1^7*g4^14*g5^7*t^7.15 + g1^7*g4^7*g5^14*t^7.15 + g2^14*g3^7*g4^7*t^7.231 + g2^7*g3^14*g4^7*t^7.231 + g2^14*g3^7*g5^7*t^7.231 + g2^7*g3^14*g5^7*t^7.231 + g1^7*g2^7*g4^14*t^7.238 + g1^7*g3^7*g4^14*t^7.238 + g1^7*g2^7*g4^7*g5^7*t^7.238 + g1^7*g3^7*g4^7*g5^7*t^7.238 + g1^7*g2^7*g5^14*t^7.238 + g1^7*g3^7*g5^14*t^7.238 - (g4^4*t^7.284)/(g1^3*g2^3*g3^3*g5^3) - (g5^4*t^7.284)/(g1^3*g2^3*g3^3*g4^3) + g2^14*g3^14*t^7.319 + g1^14*g4^14*t^7.334 + g1^14*g4^7*g5^7*t^7.334 + g1^14*g5^14*t^7.334 - (g2^4*t^7.372)/(g1^3*g3^3*g4^3*g5^3) - (g3^4*t^7.372)/(g1^3*g2^3*g4^3*g5^3) + g1*g2*g3*g4^15*g5^8*t^7.377 + g1*g2*g3*g4^8*g5^15*t^7.377 + (g4^12*t^7.422)/(g1^9*g2^2*g3^9*g5^2) + (g4^12*t^7.422)/(g1^9*g2^9*g3^2*g5^2) + (g4^5*g5^5*t^7.422)/(g1^9*g2^2*g3^9) + (g4^5*g5^5*t^7.422)/(g1^9*g2^9*g3^2) + (g5^12*t^7.422)/(g1^9*g2^2*g3^9*g4^2) + (g5^12*t^7.422)/(g1^9*g2^9*g3^2*g4^2) + g1*g2^8*g3*g4^15*g5*t^7.465 + g1*g2*g3^8*g4^15*g5*t^7.465 + 3*g1*g2^8*g3*g4^8*g5^8*t^7.465 + 3*g1*g2*g3^8*g4^8*g5^8*t^7.465 + g1*g2^8*g3*g4*g5^15*t^7.465 + g1*g2*g3^8*g4*g5^15*t^7.465 - (g1^4*t^7.468)/(g2^3*g3^3*g4^3*g5^3) + (g2^5*g4^5*t^7.511)/(g1^9*g3^9*g5^2) + (g4^5*t^7.511)/(g1^9*g2^2*g3^2*g5^2) + (g3^5*g4^5*t^7.511)/(g1^9*g2^9*g5^2) + (g2^5*g5^5*t^7.511)/(g1^9*g3^9*g4^2) + (g5^5*t^7.511)/(g1^9*g2^2*g3^2*g4^2) + (g3^5*g5^5*t^7.511)/(g1^9*g2^9*g4^2) + g1*g2^15*g3*g4^8*g5*t^7.554 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.554 + g1*g2*g3^15*g4^8*g5*t^7.554 + g1*g2^15*g3*g4*g5^8*t^7.554 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.554 + g1*g2*g3^15*g4*g5^8*t^7.554 + g1^8*g2*g3*g4^15*g5*t^7.561 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.561 + g1^8*g2*g3*g4*g5^15*t^7.561 + (g2^12*t^7.599)/(g1^9*g3^9*g4^2*g5^2) + (g2^5*t^7.599)/(g1^9*g3^2*g4^2*g5^2) + (g3^5*t^7.599)/(g1^9*g2^2*g4^2*g5^2) + (g3^12*t^7.599)/(g1^9*g2^9*g4^2*g5^2) + g1*g2^15*g3^8*g4*g5*t^7.642 + g1*g2^8*g3^15*g4*g5*t^7.642 + g1^8*g2^8*g3*g4^8*g5*t^7.649 + g1^8*g2*g3^8*g4^8*g5*t^7.649 + g1^8*g2^8*g3*g4*g5^8*t^7.649 + g1^8*g2*g3^8*g4*g5^8*t^7.649 - (g4^5*t^7.695)/(g1^2*g2^2*g3^2*g5^9) - (2*t^7.695)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g5^5*t^7.695)/(g1^2*g2^2*g3^2*g4^9) + g1^15*g2*g3*g4^8*g5*t^7.745 + g1^15*g2*g3*g4*g5^8*t^7.745 - (g2^5*t^7.783)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.783)/(g1^2*g2^2*g4^2*g5^9) - (g2^5*t^7.783)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.783)/(g1^2*g2^2*g4^9*g5^2) + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.788 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.788 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.788 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.831 + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.876 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.876 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.876 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.876 - (g1^5*t^7.879)/(g2^2*g3^2*g4^2*g5^9) - (g1^5*t^7.879)/(g2^2*g3^2*g4^9*g5^2) + g1^2*g2^16*g3^2*g4^2*g5^2*t^7.965 + g1^2*g2^9*g3^9*g4^2*g5^2*t^7.965 + g1^2*g2^2*g3^16*g4^2*g5^2*t^7.965 + g1^9*g2^2*g3^2*g4^9*g5^2*t^7.972 + (g4^7*g5^7*t^7.972)/(g1^14*g2^14) + (g4^7*g5^7*t^7.972)/(g1^14*g3^14) + (g4^7*g5^7*t^7.972)/(g1^14*g2^7*g3^7) + g1^9*g2^2*g3^2*g4^2*g5^9*t^7.972 + g1^9*g2^9*g3^2*g4^2*g5^2*t^8.06 + g1^9*g2^2*g3^9*g4^2*g5^2*t^8.06 + (g4^7*t^8.061)/(g1^14*g2^7) + (g2^7*g4^7*t^8.061)/(g1^14*g3^14) + (g4^7*t^8.061)/(g1^14*g3^7) + (g3^7*g4^7*t^8.061)/(g1^14*g2^14) + (g5^7*t^8.061)/(g1^14*g2^7) + (g2^7*g5^7*t^8.061)/(g1^14*g3^14) + (g5^7*t^8.061)/(g1^14*g3^7) + (g3^7*g5^7*t^8.061)/(g1^14*g2^14) - (g4^7*t^8.156)/(g1^7*g2^7*g3^7) + g1^16*g2^2*g3^2*g4^2*g5^2*t^8.156 - (g5^7*t^8.156)/(g1^7*g2^7*g3^7) - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.199 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.199 - (5*t^8.245)/(g1^7*g2^7) - (g2^7*t^8.245)/(g1^7*g3^14) - (5*t^8.245)/(g1^7*g3^7) - (g3^7*t^8.245)/(g1^7*g2^14) - (g4^7*t^8.245)/(g1^7*g2^7*g5^7) - (g4^7*t^8.245)/(g1^7*g3^7*g5^7) - (g5^7*t^8.245)/(g1^7*g2^7*g4^7) - (g5^7*t^8.245)/(g1^7*g3^7*g4^7) - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.288 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.288 - t^8.333/(g1^7*g4^7) - (g2^7*t^8.333)/(g1^7*g3^7*g4^7) - (g3^7*t^8.333)/(g1^7*g2^7*g4^7) - t^8.333/(g1^7*g5^7) - (g2^7*t^8.333)/(g1^7*g3^7*g5^7) - (g3^7*t^8.333)/(g1^7*g2^7*g5^7) + (g2^4*g4^11*g5^11*t^8.338)/(g1^3*g3^3) + (g3^4*g4^11*g5^11*t^8.338)/(g1^3*g2^3) - t^8.34/(g2^7*g3^7) + (g2*g4^8*g5*t^8.383)/(g1^13*g3^13) + (g4^8*g5*t^8.383)/(g1^13*g2^6*g3^6) + (g3*g4^8*g5*t^8.383)/(g1^13*g2^13) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.383 + (g2*g4*g5^8*t^8.383)/(g1^13*g3^13) + (g4*g5^8*t^8.383)/(g1^13*g2^6*g3^6) + (g3*g4*g5^8*t^8.383)/(g1^13*g2^13) + (g2^11*g4^11*g5^4*t^8.426)/(g1^3*g3^3) + (g2^4*g3^4*g4^11*g5^4*t^8.426)/g1^3 + (g3^11*g4^11*g5^4*t^8.426)/(g1^3*g2^3) + (g2^11*g4^4*g5^11*t^8.426)/(g1^3*g3^3) + (g2^4*g3^4*g4^4*g5^11*t^8.426)/g1^3 + (g3^11*g4^4*g5^11*t^8.426)/(g1^3*g2^3) + (g2^8*g4*g5*t^8.472)/(g1^13*g3^13) + (g2*g4*g5*t^8.472)/(g1^13*g3^6) + (g3*g4*g5*t^8.472)/(g1^13*g2^6) + (g3^8*g4*g5*t^8.472)/(g1^13*g2^13) + t^8.517/g4^14 + t^8.517/g5^14 + t^8.517/(g4^7*g5^7) - (g4*g5*t^8.567)/(g1^6*g2^6*g3^6) - (g1^4*g2^4*g3^4*g4^11*t^8.61)/g5^3 - (g1^4*g2^11*g4^4*g5^4*t^8.61)/g3^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.61 - (g1^4*g3^11*g4^4*g5^4*t^8.61)/g2^3 - (g1^4*g2^4*g3^4*g5^11*t^8.61)/g4^3 - (g2*g4*t^8.656)/(g1^6*g3^6*g5^6) - (g3*g4*t^8.656)/(g1^6*g2^6*g5^6) - (g2*g5*t^8.656)/(g1^6*g3^6*g4^6) - (g3*g5*t^8.656)/(g1^6*g2^6*g4^6) + (g4^19*g5^5*t^8.661)/(g1^2*g2^2*g3^2) + (g4^12*g5^12*t^8.661)/(g1^2*g2^2*g3^2) + (g4^5*g5^19*t^8.661)/(g1^2*g2^2*g3^2) - (g1^4*g2^11*g3^4*g4^4*t^8.699)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.699)/g5^3 - (g1^4*g2^11*g3^4*g5^4*t^8.699)/g4^3 - (g1^4*g2^4*g3^11*g5^4*t^8.699)/g4^3 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.703 - (g1^11*g2^4*g4^4*g5^4*t^8.706)/g3^3 - (g1^11*g3^4*g4^4*g5^4*t^8.706)/g2^3 + (g2^5*g4^19*t^8.749)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.749)/(g1^2*g2^2*g5^2) + (3*g2^5*g4^12*g5^5*t^8.749)/(g1^2*g3^2) + (3*g3^5*g4^12*g5^5*t^8.749)/(g1^2*g2^2) + (3*g2^5*g4^5*g5^12*t^8.749)/(g1^2*g3^2) + (3*g3^5*g4^5*g5^12*t^8.749)/(g1^2*g2^2) + (g2^5*g5^19*t^8.749)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.749)/(g1^2*g2^2*g4^2) + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.792 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.792 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.792 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.792 - (g1^11*g2^4*g3^4*g4^4*t^8.794)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.794)/g4^3 + (g2^12*g4^12*t^8.837)/(g1^2*g3^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.837)/(g1^2*g5^2) + (g3^12*g4^12*t^8.837)/(g1^2*g2^2*g5^2) + (3*g2^12*g4^5*g5^5*t^8.837)/(g1^2*g3^2) + (4*g2^5*g3^5*g4^5*g5^5*t^8.837)/g1^2 + (3*g3^12*g4^5*g5^5*t^8.837)/(g1^2*g2^2) + (g2^12*g5^12*t^8.837)/(g1^2*g3^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.837)/(g1^2*g4^2) + (g3^12*g5^12*t^8.837)/(g1^2*g2^2*g4^2) + (g1^5*g4^19*t^8.845)/(g2^2*g3^2*g5^2) + (2*g1^5*g4^12*g5^5*t^8.845)/(g2^2*g3^2) + (2*g1^5*g4^5*g5^12*t^8.845)/(g2^2*g3^2) + (g1^5*g5^19*t^8.845)/(g2^2*g3^2*g4^2) + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.88 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.887 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.887 + (g2^19*g4^5*t^8.926)/(g1^2*g3^2*g5^2) + (2*g2^12*g3^5*g4^5*t^8.926)/(g1^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.926)/(g1^2*g5^2) + (g3^19*g4^5*t^8.926)/(g1^2*g2^2*g5^2) + (g2^19*g5^5*t^8.926)/(g1^2*g3^2*g4^2) + (2*g2^12*g3^5*g5^5*t^8.926)/(g1^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.926)/(g1^2*g4^2) + (g3^19*g5^5*t^8.926)/(g1^2*g2^2*g4^2) + (g1^5*g2^5*g4^12*t^8.933)/(g3^2*g5^2) + (g1^5*g3^5*g4^12*t^8.933)/(g2^2*g5^2) + (2*g1^5*g2^5*g4^5*g5^5*t^8.933)/g3^2 + (2*g1^5*g3^5*g4^5*g5^5*t^8.933)/g2^2 + (g1^5*g2^5*g5^12*t^8.933)/(g3^2*g4^2) + (g1^5*g3^5*g5^12*t^8.933)/(g2^2*g4^2) + t^8.979/(g1^28*g2^28) + t^8.979/(g1^28*g3^28) + t^8.979/(g1^28*g2^7*g3^21) + t^8.979/(g1^28*g2^14*g3^14) + t^8.979/(g1^28*g2^21*g3^7) - t^4.695/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.94/(g1^9*g2^2*g3^9*g4^2*g5^2*y) - t^6.94/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + t^7.489/(g1^14*g2^7*g3^7*y) + (g2^4*g4^4*g5^4*t^7.855)/(g1^3*g3^3*y) + (g3^4*g4^4*g5^4*t^7.855)/(g1^3*g2^3*y) + (g1^5*g2^5*t^8.45)/(g3^2*g4^2*g5^2*y) + (g1^5*g3^5*t^8.45)/(g2^2*g4^2*g5^2*y) + (g4^7*g5^7*t^8.728)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.728)/(g1^7*g3^7*y) + (2*g4^7*t^8.816)/(g1^7*y) + (g2^7*g4^7*t^8.816)/(g1^7*g3^7*y) + (g3^7*g4^7*t^8.816)/(g1^7*g2^7*y) + (2*g5^7*t^8.816)/(g1^7*y) + (g2^7*g5^7*t^8.816)/(g1^7*g3^7*y) + (g3^7*g5^7*t^8.816)/(g1^7*g2^7*y) + (g2^7*t^8.904)/(g1^7*y) + (g3^7*t^8.904)/(g1^7*y) + (g4^7*t^8.912)/(g2^7*y) + (g4^7*t^8.912)/(g3^7*y) + (g5^7*t^8.912)/(g2^7*y) + (g5^7*t^8.912)/(g3^7*y) - (t^4.695*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.94*y)/(g1^9*g2^2*g3^9*g4^2*g5^2) - (t^6.94*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (t^7.489*y)/(g1^14*g2^7*g3^7) + (g2^4*g4^4*g5^4*t^7.855*y)/(g1^3*g3^3) + (g3^4*g4^4*g5^4*t^7.855*y)/(g1^3*g2^3) + (g1^5*g2^5*t^8.45*y)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^8.45*y)/(g2^2*g4^2*g5^2) + (g4^7*g5^7*t^8.728*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.728*y)/(g1^7*g3^7) + (2*g4^7*t^8.816*y)/g1^7 + (g2^7*g4^7*t^8.816*y)/(g1^7*g3^7) + (g3^7*g4^7*t^8.816*y)/(g1^7*g2^7) + (2*g5^7*t^8.816*y)/g1^7 + (g2^7*g5^7*t^8.816*y)/(g1^7*g3^7) + (g3^7*g5^7*t^8.816*y)/(g1^7*g2^7) + (g2^7*t^8.904*y)/g1^7 + (g3^7*t^8.904*y)/g1^7 + (g4^7*t^8.912*y)/g2^7 + (g4^7*t^8.912*y)/g3^7 + (g5^7*t^8.912*y)/g2^7 + (g5^7*t^8.912*y)/g3^7 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55599 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{2}q_{3}$ | 0.8824 | 1.0853 | 0.813 | [M:[0.8549, 0.7609], q:[0.7137, 0.6196, 0.6196], qb:[0.5856, 0.5856, 0.5856], phi:[0.5726]] | t^2.283 + t^2.565 + 3*t^3.514 + 6*t^3.616 + 3*t^3.898 + 2*t^4. + t^4.565 + t^4.847 + t^5.129 + 6*t^5.232 + 6*t^5.333 + 3*t^5.435 + 3*t^5.796 - 13*t^6. - t^4.718/y - t^4.718*y | detail |