Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55716 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{2}q_{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 0.9005 1.1167 0.8064 [X:[], M:[0.8701, 0.7482, 0.7482], q:[0.7175, 0.6418, 0.6099], qb:[0.6099, 0.5805, 0.5805], phi:[0.565]] [X:[], M:[[4, 4, 4, 4, 4], [-7, -7, 0, 0, 0], [-7, 0, -7, 0, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{3}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -9 2*t^2.24 + t^2.61 + t^3.48 + 4*t^3.57 + t^3.66 + 2*t^3.67 + 2*t^3.89 + 2*t^3.98 + t^4.08 + 3*t^4.49 + 2*t^4.85 + 3*t^5.18 + t^5.22 + 4*t^5.27 + 3*t^5.35 + 2*t^5.36 + 2*t^5.45 + t^5.55 + 2*t^5.73 + 6*t^5.82 - 9*t^6. - 3*t^6.09 - 2*t^6.1 + 4*t^6.14 + 2*t^6.18 + 3*t^6.23 + t^6.27 + 2*t^6.28 - 2*t^6.41 + 2*t^6.5 + 2*t^6.59 + t^6.69 + 4*t^6.73 + t^6.97 + 4*t^7.05 + 3*t^7.1 + 10*t^7.14 + 2*t^7.15 + 4*t^7.23 + 6*t^7.24 - 2*t^7.28 + t^7.32 + 3*t^7.33 - 2*t^7.37 + 2*t^7.38 + 6*t^7.42 + 9*t^7.47 + 6*t^7.51 + 8*t^7.55 + 4*t^7.56 + 4*t^7.6 + 2*t^7.64 + 4*t^7.65 - 4*t^7.69 + 2*t^7.74 - 4*t^7.78 + 3*t^7.79 + t^7.83 + 2*t^7.88 + 3*t^7.96 + 5*t^7.97 + 10*t^8.06 - t^8.16 - 2*t^8.2 - 16*t^8.24 - 2*t^8.29 - 6*t^8.33 + t^8.34 + 5*t^8.38 + 6*t^8.43 + 4*t^8.47 + 3*t^8.52 - t^8.57 - 10*t^8.61 - t^8.66 - 3*t^8.7 - 2*t^8.71 + 16*t^8.75 + 2*t^8.79 + 24*t^8.84 + t^8.88 + 2*t^8.89 + 20*t^8.93 + 5*t^8.98 - t^4.69/y - (2*t^6.94)/y + t^7.49/y + (2*t^7.85)/y + (2*t^8.45)/y + (2*t^8.73)/y + (8*t^8.82)/y + (2*t^8.9)/y + (4*t^8.91)/y - t^4.69*y - 2*t^6.94*y + t^7.49*y + 2*t^7.85*y + 2*t^8.45*y + 2*t^8.73*y + 8*t^8.82*y + 2*t^8.9*y + 4*t^8.91*y t^2.24/(g1^7*g2^7) + t^2.24/(g1^7*g3^7) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.61 + g4^7*g5^7*t^3.48 + g2^7*g4^7*t^3.57 + g3^7*g4^7*t^3.57 + g2^7*g5^7*t^3.57 + g3^7*g5^7*t^3.57 + g2^7*g3^7*t^3.66 + g1^7*g4^7*t^3.67 + g1^7*g5^7*t^3.67 + g1*g2*g3*g4^8*g5*t^3.89 + g1*g2*g3*g4*g5^8*t^3.89 + g1*g2^8*g3*g4*g5*t^3.98 + g1*g2*g3^8*g4*g5*t^3.98 + g1^8*g2*g3*g4*g5*t^4.08 + t^4.49/(g1^14*g2^14) + t^4.49/(g1^14*g3^14) + t^4.49/(g1^14*g2^7*g3^7) + (g2^4*g4^4*g5^4*t^4.85)/(g1^3*g3^3) + (g3^4*g4^4*g5^4*t^4.85)/(g1^3*g2^3) + (g4^12*t^5.18)/(g1^2*g2^2*g3^2*g5^2) + (g4^5*g5^5*t^5.18)/(g1^2*g2^2*g3^2) + (g5^12*t^5.18)/(g1^2*g2^2*g3^2*g4^2) + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.22 + (g2^5*g4^5*t^5.27)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.27)/(g1^2*g2^2*g5^2) + (g2^5*g5^5*t^5.27)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.27)/(g1^2*g2^2*g4^2) + (g2^12*t^5.35)/(g1^2*g3^2*g4^2*g5^2) + (g2^5*g3^5*t^5.35)/(g1^2*g4^2*g5^2) + (g3^12*t^5.35)/(g1^2*g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.36)/(g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.36)/(g2^2*g3^2*g4^2) + (g1^5*g2^5*t^5.45)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.45)/(g2^2*g4^2*g5^2) + (g1^12*t^5.55)/(g2^2*g3^2*g4^2*g5^2) + (g4^7*g5^7*t^5.73)/(g1^7*g2^7) + (g4^7*g5^7*t^5.73)/(g1^7*g3^7) + (g4^7*t^5.82)/g1^7 + (g2^7*g4^7*t^5.82)/(g1^7*g3^7) + (g3^7*g4^7*t^5.82)/(g1^7*g2^7) + (g5^7*t^5.82)/g1^7 + (g2^7*g5^7*t^5.82)/(g1^7*g3^7) + (g3^7*g5^7*t^5.82)/(g1^7*g2^7) - 5*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g4^7 - (g2^7*t^6.09)/g4^7 - (g3^7*t^6.09)/g4^7 - (g2^7*t^6.09)/g5^7 - (g3^7*t^6.09)/g5^7 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.09 - (g1^7*t^6.1)/g2^7 - (g1^7*t^6.1)/g3^7 + (g2*g4^8*g5*t^6.14)/(g1^6*g3^6) + (g3*g4^8*g5*t^6.14)/(g1^6*g2^6) + (g2*g4*g5^8*t^6.14)/(g1^6*g3^6) + (g3*g4*g5^8*t^6.14)/(g1^6*g2^6) - (g1^7*t^6.18)/g4^7 - (g1^7*t^6.18)/g5^7 + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.18 + g1^4*g2^4*g3^11*g4^11*g5^4*t^6.18 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.18 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.18 + (g2^8*g4*g5*t^6.23)/(g1^6*g3^6) + (g2*g3*g4*g5*t^6.23)/g1^6 + (g3^8*g4*g5*t^6.23)/(g1^6*g2^6) + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.27 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.28 + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.28 - (g1*g2*g3*g4*t^6.41)/g5^6 - (g1*g2*g3*g5*t^6.41)/g4^6 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.5 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.5 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.59 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.59 + g1^12*g2^5*g3^5*g4^5*g5^5*t^6.69 + t^6.73/(g1^21*g2^21) + t^6.73/(g1^21*g3^21) + t^6.73/(g1^21*g2^7*g3^14) + t^6.73/(g1^21*g2^14*g3^7) + g4^14*g5^14*t^6.97 + g2^7*g4^14*g5^7*t^7.05 + g3^7*g4^14*g5^7*t^7.05 + g2^7*g4^7*g5^14*t^7.05 + g3^7*g4^7*g5^14*t^7.05 + (g2^4*g4^4*g5^4*t^7.1)/(g1^10*g3^10) + (g4^4*g5^4*t^7.1)/(g1^10*g2^3*g3^3) + (g3^4*g4^4*g5^4*t^7.1)/(g1^10*g2^10) + g2^14*g4^14*t^7.14 + g2^7*g3^7*g4^14*t^7.14 + g3^14*g4^14*t^7.14 + g2^14*g4^7*g5^7*t^7.14 + 2*g2^7*g3^7*g4^7*g5^7*t^7.14 + g3^14*g4^7*g5^7*t^7.14 + g2^14*g5^14*t^7.14 + g2^7*g3^7*g5^14*t^7.14 + g3^14*g5^14*t^7.14 + g1^7*g4^14*g5^7*t^7.15 + g1^7*g4^7*g5^14*t^7.15 + g2^14*g3^7*g4^7*t^7.23 + g2^7*g3^14*g4^7*t^7.23 + g2^14*g3^7*g5^7*t^7.23 + g2^7*g3^14*g5^7*t^7.23 + g1^7*g2^7*g4^14*t^7.24 + g1^7*g3^7*g4^14*t^7.24 + g1^7*g2^7*g4^7*g5^7*t^7.24 + g1^7*g3^7*g4^7*g5^7*t^7.24 + g1^7*g2^7*g5^14*t^7.24 + g1^7*g3^7*g5^14*t^7.24 - (g4^4*t^7.28)/(g1^3*g2^3*g3^3*g5^3) - (g5^4*t^7.28)/(g1^3*g2^3*g3^3*g4^3) + g2^14*g3^14*t^7.32 + g1^14*g4^14*t^7.33 + g1^14*g4^7*g5^7*t^7.33 + g1^14*g5^14*t^7.33 - (g2^4*t^7.37)/(g1^3*g3^3*g4^3*g5^3) - (g3^4*t^7.37)/(g1^3*g2^3*g4^3*g5^3) + g1*g2*g3*g4^15*g5^8*t^7.38 + g1*g2*g3*g4^8*g5^15*t^7.38 + (g4^12*t^7.42)/(g1^9*g2^2*g3^9*g5^2) + (g4^12*t^7.42)/(g1^9*g2^9*g3^2*g5^2) + (g4^5*g5^5*t^7.42)/(g1^9*g2^2*g3^9) + (g4^5*g5^5*t^7.42)/(g1^9*g2^9*g3^2) + (g5^12*t^7.42)/(g1^9*g2^2*g3^9*g4^2) + (g5^12*t^7.42)/(g1^9*g2^9*g3^2*g4^2) - (g1^4*t^7.47)/(g2^3*g3^3*g4^3*g5^3) + g1*g2^8*g3*g4^15*g5*t^7.47 + g1*g2*g3^8*g4^15*g5*t^7.47 + 3*g1*g2^8*g3*g4^8*g5^8*t^7.47 + 3*g1*g2*g3^8*g4^8*g5^8*t^7.47 + g1*g2^8*g3*g4*g5^15*t^7.47 + g1*g2*g3^8*g4*g5^15*t^7.47 + (g2^5*g4^5*t^7.51)/(g1^9*g3^9*g5^2) + (g4^5*t^7.51)/(g1^9*g2^2*g3^2*g5^2) + (g3^5*g4^5*t^7.51)/(g1^9*g2^9*g5^2) + (g2^5*g5^5*t^7.51)/(g1^9*g3^9*g4^2) + (g5^5*t^7.51)/(g1^9*g2^2*g3^2*g4^2) + (g3^5*g5^5*t^7.51)/(g1^9*g2^9*g4^2) + g1*g2^15*g3*g4^8*g5*t^7.55 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.55 + g1*g2*g3^15*g4^8*g5*t^7.55 + g1*g2^15*g3*g4*g5^8*t^7.55 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.55 + g1*g2*g3^15*g4*g5^8*t^7.55 + g1^8*g2*g3*g4^15*g5*t^7.56 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.56 + g1^8*g2*g3*g4*g5^15*t^7.56 + (g2^12*t^7.6)/(g1^9*g3^9*g4^2*g5^2) + (g2^5*t^7.6)/(g1^9*g3^2*g4^2*g5^2) + (g3^5*t^7.6)/(g1^9*g2^2*g4^2*g5^2) + (g3^12*t^7.6)/(g1^9*g2^9*g4^2*g5^2) + g1*g2^15*g3^8*g4*g5*t^7.64 + g1*g2^8*g3^15*g4*g5*t^7.64 + g1^8*g2^8*g3*g4^8*g5*t^7.65 + g1^8*g2*g3^8*g4^8*g5*t^7.65 + g1^8*g2^8*g3*g4*g5^8*t^7.65 + g1^8*g2*g3^8*g4*g5^8*t^7.65 - (g4^5*t^7.69)/(g1^2*g2^2*g3^2*g5^9) - (2*t^7.69)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g5^5*t^7.69)/(g1^2*g2^2*g3^2*g4^9) + g1^15*g2*g3*g4^8*g5*t^7.74 + g1^15*g2*g3*g4*g5^8*t^7.74 - (g2^5*t^7.78)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.78)/(g1^2*g2^2*g4^2*g5^9) - (g2^5*t^7.78)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.78)/(g1^2*g2^2*g4^9*g5^2) + g1^2*g2^2*g3^2*g4^16*g5^2*t^7.79 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.79 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.79 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.83 - (g1^5*t^7.88)/(g2^2*g3^2*g4^2*g5^9) - (g1^5*t^7.88)/(g2^2*g3^2*g4^9*g5^2) + g1^2*g2^9*g3^2*g4^9*g5^2*t^7.88 + g1^2*g2^2*g3^9*g4^9*g5^2*t^7.88 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.88 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.88 + g1^2*g2^16*g3^2*g4^2*g5^2*t^7.96 + g1^2*g2^9*g3^9*g4^2*g5^2*t^7.96 + g1^2*g2^2*g3^16*g4^2*g5^2*t^7.96 + g1^9*g2^2*g3^2*g4^9*g5^2*t^7.97 + (g4^7*g5^7*t^7.97)/(g1^14*g2^14) + (g4^7*g5^7*t^7.97)/(g1^14*g3^14) + (g4^7*g5^7*t^7.97)/(g1^14*g2^7*g3^7) + g1^9*g2^2*g3^2*g4^2*g5^9*t^7.97 + (g4^7*t^8.06)/(g1^14*g2^7) + (g2^7*g4^7*t^8.06)/(g1^14*g3^14) + (g4^7*t^8.06)/(g1^14*g3^7) + (g3^7*g4^7*t^8.06)/(g1^14*g2^14) + g1^9*g2^9*g3^2*g4^2*g5^2*t^8.06 + g1^9*g2^2*g3^9*g4^2*g5^2*t^8.06 + (g5^7*t^8.06)/(g1^14*g2^7) + (g2^7*g5^7*t^8.06)/(g1^14*g3^14) + (g5^7*t^8.06)/(g1^14*g3^7) + (g3^7*g5^7*t^8.06)/(g1^14*g2^14) - (g4^7*t^8.16)/(g1^7*g2^7*g3^7) + g1^16*g2^2*g3^2*g4^2*g5^2*t^8.16 - (g5^7*t^8.16)/(g1^7*g2^7*g3^7) - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.2 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.2 - (5*t^8.24)/(g1^7*g2^7) - (g2^7*t^8.24)/(g1^7*g3^14) - (5*t^8.24)/(g1^7*g3^7) - (g3^7*t^8.24)/(g1^7*g2^14) - (g4^7*t^8.24)/(g1^7*g2^7*g5^7) - (g4^7*t^8.24)/(g1^7*g3^7*g5^7) - (g5^7*t^8.24)/(g1^7*g2^7*g4^7) - (g5^7*t^8.24)/(g1^7*g3^7*g4^7) - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.29 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.29 - t^8.33/(g1^7*g4^7) - (g2^7*t^8.33)/(g1^7*g3^7*g4^7) - (g3^7*t^8.33)/(g1^7*g2^7*g4^7) - t^8.33/(g1^7*g5^7) - (g2^7*t^8.33)/(g1^7*g3^7*g5^7) - (g3^7*t^8.33)/(g1^7*g2^7*g5^7) - t^8.34/(g2^7*g3^7) + (g2^4*g4^11*g5^11*t^8.34)/(g1^3*g3^3) + (g3^4*g4^11*g5^11*t^8.34)/(g1^3*g2^3) + (g2*g4^8*g5*t^8.38)/(g1^13*g3^13) + (g4^8*g5*t^8.38)/(g1^13*g2^6*g3^6) + (g3*g4^8*g5*t^8.38)/(g1^13*g2^13) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.38 + (g2*g4*g5^8*t^8.38)/(g1^13*g3^13) + (g4*g5^8*t^8.38)/(g1^13*g2^6*g3^6) + (g3*g4*g5^8*t^8.38)/(g1^13*g2^13) + (g2^11*g4^11*g5^4*t^8.43)/(g1^3*g3^3) + (g2^4*g3^4*g4^11*g5^4*t^8.43)/g1^3 + (g3^11*g4^11*g5^4*t^8.43)/(g1^3*g2^3) + (g2^11*g4^4*g5^11*t^8.43)/(g1^3*g3^3) + (g2^4*g3^4*g4^4*g5^11*t^8.43)/g1^3 + (g3^11*g4^4*g5^11*t^8.43)/(g1^3*g2^3) + (g2^8*g4*g5*t^8.47)/(g1^13*g3^13) + (g2*g4*g5*t^8.47)/(g1^13*g3^6) + (g3*g4*g5*t^8.47)/(g1^13*g2^6) + (g3^8*g4*g5*t^8.47)/(g1^13*g2^13) + t^8.52/g4^14 + t^8.52/g5^14 + t^8.52/(g4^7*g5^7) - (g4*g5*t^8.57)/(g1^6*g2^6*g3^6) - (g1^4*g2^4*g3^4*g4^11*t^8.61)/g5^3 - (g1^4*g2^11*g4^4*g5^4*t^8.61)/g3^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.61 - (g1^4*g3^11*g4^4*g5^4*t^8.61)/g2^3 - (g1^4*g2^4*g3^4*g5^11*t^8.61)/g4^3 - (g2*g4*t^8.66)/(g1^6*g3^6*g5^6) - (g3*g4*t^8.66)/(g1^6*g2^6*g5^6) - (g2*g5*t^8.66)/(g1^6*g3^6*g4^6) - (g3*g5*t^8.66)/(g1^6*g2^6*g4^6) + (g4^19*g5^5*t^8.66)/(g1^2*g2^2*g3^2) + (g4^12*g5^12*t^8.66)/(g1^2*g2^2*g3^2) + (g4^5*g5^19*t^8.66)/(g1^2*g2^2*g3^2) - (g1^4*g2^11*g3^4*g4^4*t^8.7)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.7)/g5^3 - (g1^4*g2^11*g3^4*g5^4*t^8.7)/g4^3 - (g1^4*g2^4*g3^11*g5^4*t^8.7)/g4^3 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.7 - (g1^11*g2^4*g4^4*g5^4*t^8.71)/g3^3 - (g1^11*g3^4*g4^4*g5^4*t^8.71)/g2^3 + (g2^5*g4^19*t^8.75)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.75)/(g1^2*g2^2*g5^2) + (3*g2^5*g4^12*g5^5*t^8.75)/(g1^2*g3^2) + (3*g3^5*g4^12*g5^5*t^8.75)/(g1^2*g2^2) + (3*g2^5*g4^5*g5^12*t^8.75)/(g1^2*g3^2) + (3*g3^5*g4^5*g5^12*t^8.75)/(g1^2*g2^2) + (g2^5*g5^19*t^8.75)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.75)/(g1^2*g2^2*g4^2) - (g1^11*g2^4*g3^4*g4^4*t^8.79)/g5^3 - (g1^11*g2^4*g3^4*g5^4*t^8.79)/g4^3 + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.79 + g1^8*g2^8*g3^15*g4^15*g5^8*t^8.79 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.79 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.79 + (g2^12*g4^12*t^8.84)/(g1^2*g3^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.84)/(g1^2*g5^2) + (g3^12*g4^12*t^8.84)/(g1^2*g2^2*g5^2) + (g1^5*g4^19*t^8.84)/(g2^2*g3^2*g5^2) + (3*g2^12*g4^5*g5^5*t^8.84)/(g1^2*g3^2) + (4*g2^5*g3^5*g4^5*g5^5*t^8.84)/g1^2 + (3*g3^12*g4^5*g5^5*t^8.84)/(g1^2*g2^2) + (2*g1^5*g4^12*g5^5*t^8.84)/(g2^2*g3^2) + (g2^12*g5^12*t^8.84)/(g1^2*g3^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.84)/(g1^2*g4^2) + (g3^12*g5^12*t^8.84)/(g1^2*g2^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.84)/(g2^2*g3^2) + (g1^5*g5^19*t^8.84)/(g2^2*g3^2*g4^2) + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.88 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.89 + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.89 + (g2^19*g4^5*t^8.93)/(g1^2*g3^2*g5^2) + (2*g2^12*g3^5*g4^5*t^8.93)/(g1^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.93)/(g1^2*g5^2) + (g3^19*g4^5*t^8.93)/(g1^2*g2^2*g5^2) + (g1^5*g2^5*g4^12*t^8.93)/(g3^2*g5^2) + (g1^5*g3^5*g4^12*t^8.93)/(g2^2*g5^2) + (g2^19*g5^5*t^8.93)/(g1^2*g3^2*g4^2) + (2*g2^12*g3^5*g5^5*t^8.93)/(g1^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.93)/(g1^2*g4^2) + (g3^19*g5^5*t^8.93)/(g1^2*g2^2*g4^2) + (2*g1^5*g2^5*g4^5*g5^5*t^8.93)/g3^2 + (2*g1^5*g3^5*g4^5*g5^5*t^8.93)/g2^2 + (g1^5*g2^5*g5^12*t^8.93)/(g3^2*g4^2) + (g1^5*g3^5*g5^12*t^8.93)/(g2^2*g4^2) + t^8.98/(g1^28*g2^28) + t^8.98/(g1^28*g3^28) + t^8.98/(g1^28*g2^7*g3^21) + t^8.98/(g1^28*g2^14*g3^14) + t^8.98/(g1^28*g2^21*g3^7) - t^4.69/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.94/(g1^9*g2^2*g3^9*g4^2*g5^2*y) - t^6.94/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + t^7.49/(g1^14*g2^7*g3^7*y) + (g2^4*g4^4*g5^4*t^7.85)/(g1^3*g3^3*y) + (g3^4*g4^4*g5^4*t^7.85)/(g1^3*g2^3*y) + (g1^5*g2^5*t^8.45)/(g3^2*g4^2*g5^2*y) + (g1^5*g3^5*t^8.45)/(g2^2*g4^2*g5^2*y) + (g4^7*g5^7*t^8.73)/(g1^7*g2^7*y) + (g4^7*g5^7*t^8.73)/(g1^7*g3^7*y) + (2*g4^7*t^8.82)/(g1^7*y) + (g2^7*g4^7*t^8.82)/(g1^7*g3^7*y) + (g3^7*g4^7*t^8.82)/(g1^7*g2^7*y) + (2*g5^7*t^8.82)/(g1^7*y) + (g2^7*g5^7*t^8.82)/(g1^7*g3^7*y) + (g3^7*g5^7*t^8.82)/(g1^7*g2^7*y) + (g2^7*t^8.9)/(g1^7*y) + (g3^7*t^8.9)/(g1^7*y) + (g4^7*t^8.91)/(g2^7*y) + (g4^7*t^8.91)/(g3^7*y) + (g5^7*t^8.91)/(g2^7*y) + (g5^7*t^8.91)/(g3^7*y) - (t^4.69*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.94*y)/(g1^9*g2^2*g3^9*g4^2*g5^2) - (t^6.94*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (t^7.49*y)/(g1^14*g2^7*g3^7) + (g2^4*g4^4*g5^4*t^7.85*y)/(g1^3*g3^3) + (g3^4*g4^4*g5^4*t^7.85*y)/(g1^3*g2^3) + (g1^5*g2^5*t^8.45*y)/(g3^2*g4^2*g5^2) + (g1^5*g3^5*t^8.45*y)/(g2^2*g4^2*g5^2) + (g4^7*g5^7*t^8.73*y)/(g1^7*g2^7) + (g4^7*g5^7*t^8.73*y)/(g1^7*g3^7) + (2*g4^7*t^8.82*y)/g1^7 + (g2^7*g4^7*t^8.82*y)/(g1^7*g3^7) + (g3^7*g4^7*t^8.82*y)/(g1^7*g2^7) + (2*g5^7*t^8.82*y)/g1^7 + (g2^7*g5^7*t^8.82*y)/(g1^7*g3^7) + (g3^7*g5^7*t^8.82*y)/(g1^7*g2^7) + (g2^7*t^8.9*y)/g1^7 + (g3^7*t^8.9*y)/g1^7 + (g4^7*t^8.91*y)/g2^7 + (g4^7*t^8.91*y)/g3^7 + (g5^7*t^8.91*y)/g2^7 + (g5^7*t^8.91*y)/g3^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55599 SU2adj1nf3 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{2}q_{3}$ 0.8824 1.0853 0.813 [X:[], M:[0.8549, 0.7609], q:[0.7137, 0.6196, 0.6196], qb:[0.5856, 0.5856, 0.5856], phi:[0.5726]] t^2.28 + t^2.56 + 3*t^3.51 + 6*t^3.62 + 3*t^3.9 + 2*t^4. + t^4.57 + t^4.85 + t^5.13 + 6*t^5.23 + 6*t^5.33 + 3*t^5.44 + 3*t^5.8 - 13*t^6. - t^4.72/y - t^4.72*y detail