Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55759 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{2}q_{3}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ | 0.899 | 1.1107 | 0.8094 | [M:[0.8775, 0.7712, 0.7712], q:[0.7194, 0.6144, 0.6144], qb:[0.6144, 0.6144, 0.578], phi:[0.5613]] | [M:[[4, 4, 4, 4, 4], [-7, -7, 0, 0, 0], [0, 0, -7, -7, 0]], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{3}$, ${ }q_{3}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{1}q_{2}$, ${ }q_{1}q_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{3}$, ${ }M_{3}q_{2}\tilde{q}_{3}$, ${ }M_{3}q_{3}\tilde{q}_{3}$, ${ }M_{2}\tilde{q}_{2}\tilde{q}_{3}$ | ${}$ | -9 | 2*t^2.314 + t^2.632 + 4*t^3.577 + 4*t^3.686 + t^3.892 + 4*t^4.001 + 3*t^4.627 + 2*t^4.946 + t^5.152 + 4*t^5.261 + t^5.265 + 10*t^5.37 + 4*t^5.891 - 9*t^6. - 4*t^6.109 + 2*t^6.206 + 4*t^6.21 + 4*t^6.315 + 4*t^6.319 - t^6.424 + t^6.525 + 4*t^6.634 + 4*t^6.941 + 10*t^7.154 + 2*t^7.26 + 12*t^7.264 - 4*t^7.369 + 9*t^7.373 + 2*t^7.465 + 4*t^7.469 + 4*t^7.575 + 16*t^7.579 + 4*t^7.684 + 12*t^7.688 + t^7.784 - 4*t^7.793 + 4*t^7.893 + t^7.897 + 10*t^8.003 + 4*t^8.204 - t^8.208 - 12*t^8.314 - 4*t^8.318 - 4*t^8.423 + 3*t^8.519 + 4*t^8.523 + t^8.532 + 4*t^8.629 - 10*t^8.632 + 4*t^8.729 - 2*t^8.738 - 4*t^8.742 + 16*t^8.838 + 4*t^8.842 + 36*t^8.947 + 4*t^8.951 - t^4.684/y - (2*t^6.997)/y + t^7.627/y + (2*t^7.946)/y + (2*t^8.37)/y + (8*t^8.891)/y - t^4.684*y - 2*t^6.997*y + t^7.627*y + 2*t^7.946*y + 2*t^8.37*y + 8*t^8.891*y | t^2.314/(g1^7*g2^7) + t^2.314/(g3^7*g4^7) + g1^4*g2^4*g3^4*g4^4*g5^4*t^2.632 + g1^7*g5^7*t^3.577 + g2^7*g5^7*t^3.577 + g3^7*g5^7*t^3.577 + g4^7*g5^7*t^3.577 + g1^7*g3^7*t^3.686 + g2^7*g3^7*t^3.686 + g1^7*g4^7*t^3.686 + g2^7*g4^7*t^3.686 + g1*g2*g3*g4*g5^8*t^3.892 + g1^8*g2*g3*g4*g5*t^4.001 + g1*g2^8*g3*g4*g5*t^4.001 + g1*g2*g3^8*g4*g5*t^4.001 + g1*g2*g3*g4^8*g5*t^4.001 + t^4.627/(g1^14*g2^14) + t^4.627/(g3^14*g4^14) + t^4.627/(g1^7*g2^7*g3^7*g4^7) + (g1^4*g2^4*g5^4*t^4.946)/(g3^3*g4^3) + (g3^4*g4^4*g5^4*t^4.946)/(g1^3*g2^3) + (g5^12*t^5.152)/(g1^2*g2^2*g3^2*g4^2) + (g1^5*g5^5*t^5.261)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.261)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.261)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.261)/(g1^2*g2^2*g3^2) + g1^8*g2^8*g3^8*g4^8*g5^8*t^5.265 + (g1^12*t^5.37)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.37)/(g3^2*g4^2*g5^2) + (g2^12*t^5.37)/(g1^2*g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.37)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.37)/(g1^2*g4^2*g5^2) + (g3^12*t^5.37)/(g1^2*g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.37)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.37)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.37)/(g1^2*g2^2*g5^2) + (g4^12*t^5.37)/(g1^2*g2^2*g3^2*g5^2) + (g3^7*g5^7*t^5.891)/(g1^7*g2^7) + (g1^7*g5^7*t^5.891)/(g3^7*g4^7) + (g2^7*g5^7*t^5.891)/(g3^7*g4^7) + (g4^7*g5^7*t^5.891)/(g1^7*g2^7) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g3^7 - (g1^7*t^6.109)/g5^7 - (g2^7*t^6.109)/g5^7 - (g3^7*t^6.109)/g5^7 - (g4^7*t^6.109)/g5^7 + (g1*g2*g5^8*t^6.206)/(g3^6*g4^6) + (g3*g4*g5^8*t^6.206)/(g1^6*g2^6) + g1^11*g2^4*g3^4*g4^4*g5^11*t^6.21 + g1^4*g2^11*g3^4*g4^4*g5^11*t^6.21 + g1^4*g2^4*g3^11*g4^4*g5^11*t^6.21 + g1^4*g2^4*g3^4*g4^11*g5^11*t^6.21 + (g1^8*g2*g5*t^6.315)/(g3^6*g4^6) + (g1*g2^8*g5*t^6.315)/(g3^6*g4^6) + (g3^8*g4*g5*t^6.315)/(g1^6*g2^6) + (g3*g4^8*g5*t^6.315)/(g1^6*g2^6) + g1^11*g2^4*g3^11*g4^4*g5^4*t^6.319 + g1^4*g2^11*g3^11*g4^4*g5^4*t^6.319 + g1^11*g2^4*g3^4*g4^11*g5^4*t^6.319 + g1^4*g2^11*g3^4*g4^11*g5^4*t^6.319 - (g1*g2*g3*g4*t^6.424)/g5^6 + g1^5*g2^5*g3^5*g4^5*g5^12*t^6.525 + g1^12*g2^5*g3^5*g4^5*g5^5*t^6.634 + g1^5*g2^12*g3^5*g4^5*g5^5*t^6.634 + g1^5*g2^5*g3^12*g4^5*g5^5*t^6.634 + g1^5*g2^5*g3^5*g4^12*g5^5*t^6.634 + t^6.941/(g1^21*g2^21) + t^6.941/(g3^21*g4^21) + t^6.941/(g1^7*g2^7*g3^14*g4^14) + t^6.941/(g1^14*g2^14*g3^7*g4^7) + g1^14*g5^14*t^7.154 + g1^7*g2^7*g5^14*t^7.154 + g2^14*g5^14*t^7.154 + g1^7*g3^7*g5^14*t^7.154 + g2^7*g3^7*g5^14*t^7.154 + g3^14*g5^14*t^7.154 + g1^7*g4^7*g5^14*t^7.154 + g2^7*g4^7*g5^14*t^7.154 + g3^7*g4^7*g5^14*t^7.154 + g4^14*g5^14*t^7.154 + (g1^4*g2^4*g5^4*t^7.26)/(g3^10*g4^10) + (g3^4*g4^4*g5^4*t^7.26)/(g1^10*g2^10) + g1^14*g3^7*g5^7*t^7.264 + g1^7*g2^7*g3^7*g5^7*t^7.264 + g2^14*g3^7*g5^7*t^7.264 + g1^7*g3^14*g5^7*t^7.264 + g2^7*g3^14*g5^7*t^7.264 + g1^14*g4^7*g5^7*t^7.264 + g1^7*g2^7*g4^7*g5^7*t^7.264 + g2^14*g4^7*g5^7*t^7.264 + g1^7*g3^7*g4^7*g5^7*t^7.264 + g2^7*g3^7*g4^7*g5^7*t^7.264 + g1^7*g4^14*g5^7*t^7.264 + g2^7*g4^14*g5^7*t^7.264 - (g1^4*t^7.369)/(g2^3*g3^3*g4^3*g5^3) - (g2^4*t^7.369)/(g1^3*g3^3*g4^3*g5^3) - (g3^4*t^7.369)/(g1^3*g2^3*g4^3*g5^3) - (g4^4*t^7.369)/(g1^3*g2^3*g3^3*g5^3) + g1^14*g3^14*t^7.373 + g1^7*g2^7*g3^14*t^7.373 + g2^14*g3^14*t^7.373 + g1^14*g3^7*g4^7*t^7.373 + g1^7*g2^7*g3^7*g4^7*t^7.373 + g2^14*g3^7*g4^7*t^7.373 + g1^14*g4^14*t^7.373 + g1^7*g2^7*g4^14*t^7.373 + g2^14*g4^14*t^7.373 + (g5^12*t^7.465)/(g1^2*g2^2*g3^9*g4^9) + (g5^12*t^7.465)/(g1^9*g2^9*g3^2*g4^2) + g1^8*g2*g3*g4*g5^15*t^7.469 + g1*g2^8*g3*g4*g5^15*t^7.469 + g1*g2*g3^8*g4*g5^15*t^7.469 + g1*g2*g3*g4^8*g5^15*t^7.469 + (g1^5*g5^5*t^7.575)/(g2^2*g3^9*g4^9) + (g2^5*g5^5*t^7.575)/(g1^2*g3^9*g4^9) + (g3^5*g5^5*t^7.575)/(g1^9*g2^9*g4^2) + (g4^5*g5^5*t^7.575)/(g1^9*g2^9*g3^2) + g1^15*g2*g3*g4*g5^8*t^7.579 + 2*g1^8*g2^8*g3*g4*g5^8*t^7.579 + g1*g2^15*g3*g4*g5^8*t^7.579 + 2*g1^8*g2*g3^8*g4*g5^8*t^7.579 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.579 + g1*g2*g3^15*g4*g5^8*t^7.579 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.579 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.579 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.579 + g1*g2*g3*g4^15*g5^8*t^7.579 + (g1^12*t^7.684)/(g2^2*g3^9*g4^9*g5^2) + (g1^5*g2^5*t^7.684)/(g3^9*g4^9*g5^2) + (g2^12*t^7.684)/(g1^2*g3^9*g4^9*g5^2) - (2*t^7.684)/(g1^2*g2^2*g3^2*g4^2*g5^2) + (g3^12*t^7.684)/(g1^9*g2^9*g4^2*g5^2) + (g3^5*g4^5*t^7.684)/(g1^9*g2^9*g5^2) + (g4^12*t^7.684)/(g1^9*g2^9*g3^2*g5^2) + g1^15*g2*g3^8*g4*g5*t^7.688 + g1^8*g2^8*g3^8*g4*g5*t^7.688 + g1*g2^15*g3^8*g4*g5*t^7.688 + g1^8*g2*g3^15*g4*g5*t^7.688 + g1*g2^8*g3^15*g4*g5*t^7.688 + g1^15*g2*g3*g4^8*g5*t^7.688 + g1^8*g2^8*g3*g4^8*g5*t^7.688 + g1*g2^15*g3*g4^8*g5*t^7.688 + g1^8*g2*g3^8*g4^8*g5*t^7.688 + g1*g2^8*g3^8*g4^8*g5*t^7.688 + g1^8*g2*g3*g4^15*g5*t^7.688 + g1*g2^8*g3*g4^15*g5*t^7.688 + g1^2*g2^2*g3^2*g4^2*g5^16*t^7.784 - (g1^5*t^7.793)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.793)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.793)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.793)/(g1^2*g2^2*g3^2*g5^9) + g1^9*g2^2*g3^2*g4^2*g5^9*t^7.893 + g1^2*g2^9*g3^2*g4^2*g5^9*t^7.893 + g1^2*g2^2*g3^9*g4^2*g5^9*t^7.893 + g1^2*g2^2*g3^2*g4^9*g5^9*t^7.893 + g1^12*g2^12*g3^12*g4^12*g5^12*t^7.897 + g1^16*g2^2*g3^2*g4^2*g5^2*t^8.003 + g1^9*g2^9*g3^2*g4^2*g5^2*t^8.003 + g1^2*g2^16*g3^2*g4^2*g5^2*t^8.003 + g1^9*g2^2*g3^9*g4^2*g5^2*t^8.003 + g1^2*g2^9*g3^9*g4^2*g5^2*t^8.003 + g1^2*g2^2*g3^16*g4^2*g5^2*t^8.003 + g1^9*g2^2*g3^2*g4^9*g5^2*t^8.003 + g1^2*g2^9*g3^2*g4^9*g5^2*t^8.003 + g1^2*g2^2*g3^9*g4^9*g5^2*t^8.003 + g1^2*g2^2*g3^2*g4^16*g5^2*t^8.003 + (g3^7*g5^7*t^8.204)/(g1^14*g2^14) + (g1^7*g5^7*t^8.204)/(g3^14*g4^14) + (g2^7*g5^7*t^8.204)/(g3^14*g4^14) + (g4^7*g5^7*t^8.204)/(g1^14*g2^14) - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.208 - (4*t^8.314)/(g1^7*g2^7) - (4*t^8.314)/(g3^7*g4^7) - (g1^7*t^8.314)/(g2^7*g3^7*g4^7) - (g2^7*t^8.314)/(g1^7*g3^7*g4^7) - (g3^7*t^8.314)/(g1^7*g2^7*g4^7) - (g4^7*t^8.314)/(g1^7*g2^7*g3^7) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.318 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.318 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.318 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.318 - (g3^7*t^8.423)/(g1^7*g2^7*g5^7) - (g1^7*t^8.423)/(g3^7*g4^7*g5^7) - (g2^7*t^8.423)/(g3^7*g4^7*g5^7) - (g4^7*t^8.423)/(g1^7*g2^7*g5^7) + (g1*g2*g5^8*t^8.519)/(g3^13*g4^13) + (g5^8*t^8.519)/(g1^6*g2^6*g3^6*g4^6) + (g3*g4*g5^8*t^8.519)/(g1^13*g2^13) + (g1^11*g2^4*g5^11*t^8.523)/(g3^3*g4^3) + (g1^4*g2^11*g5^11*t^8.523)/(g3^3*g4^3) + (g3^11*g4^4*g5^11*t^8.523)/(g1^3*g2^3) + (g3^4*g4^11*g5^11*t^8.523)/(g1^3*g2^3) + t^8.532/g5^14 + (g1^8*g2*g5*t^8.629)/(g3^13*g4^13) + (g1*g2^8*g5*t^8.629)/(g3^13*g4^13) + (g3^8*g4*g5*t^8.629)/(g1^13*g2^13) + (g3*g4^8*g5*t^8.629)/(g1^13*g2^13) - (g1^4*g2^4*g3^11*g5^4*t^8.632)/g4^3 - (g1^11*g3^4*g4^4*g5^4*t^8.632)/g2^3 - 6*g1^4*g2^4*g3^4*g4^4*g5^4*t^8.632 - (g2^11*g3^4*g4^4*g5^4*t^8.632)/g1^3 - (g1^4*g2^4*g4^11*g5^4*t^8.632)/g3^3 + (g1^5*g5^19*t^8.729)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.729)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.729)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.729)/(g1^2*g2^2*g3^2) - (g1*g2*t^8.738)/(g3^6*g4^6*g5^6) - (g3*g4*t^8.738)/(g1^6*g2^6*g5^6) - (g1^11*g2^4*g3^4*g4^4*t^8.742)/g5^3 - (g1^4*g2^11*g3^4*g4^4*t^8.742)/g5^3 - (g1^4*g2^4*g3^11*g4^4*t^8.742)/g5^3 - (g1^4*g2^4*g3^4*g4^11*t^8.742)/g5^3 + (g1^12*g5^12*t^8.838)/(g2^2*g3^2*g4^2) + (2*g1^5*g2^5*g5^12*t^8.838)/(g3^2*g4^2) + (g2^12*g5^12*t^8.838)/(g1^2*g3^2*g4^2) + (2*g1^5*g3^5*g5^12*t^8.838)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.838)/(g1^2*g4^2) + (g3^12*g5^12*t^8.838)/(g1^2*g2^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.838)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.838)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.838)/(g1^2*g2^2) + (g4^12*g5^12*t^8.838)/(g1^2*g2^2*g3^2) + g1^15*g2^8*g3^8*g4^8*g5^15*t^8.842 + g1^8*g2^15*g3^8*g4^8*g5^15*t^8.842 + g1^8*g2^8*g3^15*g4^8*g5^15*t^8.842 + g1^8*g2^8*g3^8*g4^15*g5^15*t^8.842 + (g1^19*g5^5*t^8.947)/(g2^2*g3^2*g4^2) + (2*g1^12*g2^5*g5^5*t^8.947)/(g3^2*g4^2) + (2*g1^5*g2^12*g5^5*t^8.947)/(g3^2*g4^2) + (g2^19*g5^5*t^8.947)/(g1^2*g3^2*g4^2) + (2*g1^12*g3^5*g5^5*t^8.947)/(g2^2*g4^2) + (2*g1^5*g2^5*g3^5*g5^5*t^8.947)/g4^2 + (2*g2^12*g3^5*g5^5*t^8.947)/(g1^2*g4^2) + (2*g1^5*g3^12*g5^5*t^8.947)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.947)/(g1^2*g4^2) + (g3^19*g5^5*t^8.947)/(g1^2*g2^2*g4^2) + (2*g1^12*g4^5*g5^5*t^8.947)/(g2^2*g3^2) + (2*g1^5*g2^5*g4^5*g5^5*t^8.947)/g3^2 + (2*g2^12*g4^5*g5^5*t^8.947)/(g1^2*g3^2) + (2*g1^5*g3^5*g4^5*g5^5*t^8.947)/g2^2 + (2*g2^5*g3^5*g4^5*g5^5*t^8.947)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.947)/(g1^2*g2^2) + (2*g1^5*g4^12*g5^5*t^8.947)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.947)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.947)/(g1^2*g2^2) + (g4^19*g5^5*t^8.947)/(g1^2*g2^2*g3^2) + g1^15*g2^8*g3^15*g4^8*g5^8*t^8.951 + g1^8*g2^15*g3^15*g4^8*g5^8*t^8.951 + g1^15*g2^8*g3^8*g4^15*g5^8*t^8.951 + g1^8*g2^15*g3^8*g4^15*g5^8*t^8.951 - t^4.684/(g1^2*g2^2*g3^2*g4^2*g5^2*y) - t^6.997/(g1^2*g2^2*g3^9*g4^9*g5^2*y) - t^6.997/(g1^9*g2^9*g3^2*g4^2*g5^2*y) + t^7.627/(g1^7*g2^7*g3^7*g4^7*y) + (g1^4*g2^4*g5^4*t^7.946)/(g3^3*g4^3*y) + (g3^4*g4^4*g5^4*t^7.946)/(g1^3*g2^3*y) + (g1^5*g2^5*t^8.37)/(g3^2*g4^2*g5^2*y) + (g3^5*g4^5*t^8.37)/(g1^2*g2^2*g5^2*y) + (g5^7*t^8.891)/(g1^7*y) + (g5^7*t^8.891)/(g2^7*y) + (g5^7*t^8.891)/(g3^7*y) + (g3^7*g5^7*t^8.891)/(g1^7*g2^7*y) + (g5^7*t^8.891)/(g4^7*y) + (g1^7*g5^7*t^8.891)/(g3^7*g4^7*y) + (g2^7*g5^7*t^8.891)/(g3^7*g4^7*y) + (g4^7*g5^7*t^8.891)/(g1^7*g2^7*y) - (t^4.684*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (t^6.997*y)/(g1^2*g2^2*g3^9*g4^9*g5^2) - (t^6.997*y)/(g1^9*g2^9*g3^2*g4^2*g5^2) + (t^7.627*y)/(g1^7*g2^7*g3^7*g4^7) + (g1^4*g2^4*g5^4*t^7.946*y)/(g3^3*g4^3) + (g3^4*g4^4*g5^4*t^7.946*y)/(g1^3*g2^3) + (g1^5*g2^5*t^8.37*y)/(g3^2*g4^2*g5^2) + (g3^5*g4^5*t^8.37*y)/(g1^2*g2^2*g5^2) + (g5^7*t^8.891*y)/g1^7 + (g5^7*t^8.891*y)/g2^7 + (g5^7*t^8.891*y)/g3^7 + (g3^7*g5^7*t^8.891*y)/(g1^7*g2^7) + (g5^7*t^8.891*y)/g4^7 + (g1^7*g5^7*t^8.891*y)/(g3^7*g4^7) + (g2^7*g5^7*t^8.891*y)/(g3^7*g4^7) + (g4^7*g5^7*t^8.891*y)/(g1^7*g2^7) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55599 | SU2adj1nf3 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{2}q_{3}$ | 0.8824 | 1.0853 | 0.813 | [M:[0.8549, 0.7609], q:[0.7137, 0.6196, 0.6196], qb:[0.5856, 0.5856, 0.5856], phi:[0.5726]] | t^2.283 + t^2.565 + 3*t^3.514 + 6*t^3.616 + 3*t^3.898 + 2*t^4. + t^4.565 + t^4.847 + t^5.129 + 6*t^5.232 + 6*t^5.333 + 3*t^5.435 + 3*t^5.796 - 13*t^6. - t^4.718/y - t^4.718*y | detail |