Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55760 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ + $ M_1^2$ 0.8639 1.0397 0.831 [X:[], M:[1.0, 0.6881], q:[0.75, 0.6559, 0.6559], qb:[0.646, 0.646, 0.646], phi:[0.5]] [X:[], M:[[0, 0, 0, 0], [0, 1, 1, 1]], q:[[0, 0, 0, 0], [-1, -1, -1, -1], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, 0, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ M_2^2$, $ q_1\tilde{q}_1$, $ q_1q_3$, $ M_1M_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$ . -12 t^2.06 + t^3. + 3*t^3.88 + 6*t^3.91 + t^4.13 + 3*t^4.19 + 2*t^4.22 + t^5.06 + 6*t^5.38 + 6*t^5.41 + 3*t^5.44 + 3*t^5.94 - 12*t^6. - 6*t^6.03 + t^6.19 + 3*t^6.25 - 3*t^6.31 + 3*t^6.88 + 6*t^6.91 + t^7.13 + 6*t^7.44 - 9*t^7.5 - 6*t^7.53 + 6*t^7.75 + 16*t^7.78 + 18*t^7.81 + 3*t^8. - t^8.06 + 18*t^8.09 + 15*t^8.12 + t^8.26 + 3*t^8.32 + 3*t^8.38 + 6*t^8.41 + 3*t^8.44 - 3*t^8.69 - 2*t^8.72 + 3*t^8.94 - t^4.5/y - t^6.56/y + t^8.06/y + t^8.44/y - t^8.63/y + (3*t^8.94)/y + (6*t^8.97)/y - t^4.5*y - t^6.56*y + t^8.06*y + t^8.44*y - t^8.63*y + 3*t^8.94*y + 6*t^8.97*y g2*g3*g4*t^2.06 + t^3. + g2*g3*t^3.88 + g2*g4*t^3.88 + g3*g4*t^3.88 + g1*g2*t^3.91 + t^3.91/(g1*g2*g3) + g1*g3*t^3.91 + t^3.91/(g1*g2*g4) + t^3.91/(g1*g3*g4) + g1*g4*t^3.91 + g2^2*g3^2*g4^2*t^4.13 + g2*t^4.19 + g3*t^4.19 + g4*t^4.19 + g1*t^4.22 + t^4.22/(g1*g2*g3*g4) + g2*g3*g4*t^5.06 + g2^2*t^5.38 + g2*g3*t^5.38 + g3^2*t^5.38 + g2*g4*t^5.38 + g3*g4*t^5.38 + g4^2*t^5.38 + g1*g2*t^5.41 + t^5.41/(g1*g2*g3) + g1*g3*t^5.41 + t^5.41/(g1*g2*g4) + t^5.41/(g1*g3*g4) + g1*g4*t^5.41 + g1^2*t^5.44 + t^5.44/(g1^2*g2^2*g3^2*g4^2) + t^5.44/(g2*g3*g4) + g2^2*g3^2*g4*t^5.94 + g2^2*g3*g4^2*t^5.94 + g2*g3^2*g4^2*t^5.94 - 4*t^6. - (g2*t^6.)/g3 - (g3*t^6.)/g2 - (g2*t^6.)/g4 - t^6./(g1^2*g2*g3*g4) - (g3*t^6.)/g4 - (g4*t^6.)/g2 - (g4*t^6.)/g3 - g1^2*g2*g3*g4*t^6. - (g1*t^6.03)/g2 - (g1*t^6.03)/g3 - t^6.03/(g1*g2*g3*g4^2) - (g1*t^6.03)/g4 - t^6.03/(g1*g2*g3^2*g4) - t^6.03/(g1*g2^2*g3*g4) + g2^3*g3^3*g4^3*t^6.19 + g2^2*g3*g4*t^6.25 + g2*g3^2*g4*t^6.25 + g2*g3*g4^2*t^6.25 - t^6.31/g2 - t^6.31/g3 - t^6.31/g4 + g2*g3*t^6.88 + g2*g4*t^6.88 + g3*g4*t^6.88 + g1*g2*t^6.91 + t^6.91/(g1*g2*g3) + g1*g3*t^6.91 + t^6.91/(g1*g2*g4) + t^6.91/(g1*g3*g4) + g1*g4*t^6.91 + g2^2*g3^2*g4^2*t^7.13 + g2^3*g3*g4*t^7.44 + g2^2*g3^2*g4*t^7.44 + g2*g3^3*g4*t^7.44 + g2^2*g3*g4^2*t^7.44 + g2*g3^2*g4^2*t^7.44 + g2*g3*g4^3*t^7.44 - 3*t^7.5 - (g2*t^7.5)/g3 - (g3*t^7.5)/g2 - (g2*t^7.5)/g4 - (g3*t^7.5)/g4 - (g4*t^7.5)/g2 - (g4*t^7.5)/g3 - (g1*t^7.53)/g2 - (g1*t^7.53)/g3 - t^7.53/(g1*g2*g3*g4^2) - (g1*t^7.53)/g4 - t^7.53/(g1*g2*g3^2*g4) - t^7.53/(g1*g2^2*g3*g4) + g2^2*g3^2*t^7.75 + g2^2*g3*g4*t^7.75 + g2*g3^2*g4*t^7.75 + g2^2*g4^2*t^7.75 + g2*g3*g4^2*t^7.75 + g3^2*g4^2*t^7.75 + (2*t^7.78)/g1 + (g2*t^7.78)/(g1*g3) + (g3*t^7.78)/(g1*g2) + g1*g2^2*g3*t^7.78 + g1*g2*g3^2*t^7.78 + (g2*t^7.78)/(g1*g4) + (g3*t^7.78)/(g1*g4) + (g4*t^7.78)/(g1*g2) + g1*g2^2*g4*t^7.78 + (g4*t^7.78)/(g1*g3) + 2*g1*g2*g3*g4*t^7.78 + g1*g3^2*g4*t^7.78 + g1*g2*g4^2*t^7.78 + g1*g3*g4^2*t^7.78 + t^7.81/g2 + g1^2*g2^2*t^7.81 + t^7.81/(g1^2*g2^2*g3^2) + t^7.81/g3 + g1^2*g2*g3*t^7.81 + g1^2*g3^2*t^7.81 + t^7.81/(g1^2*g2^2*g4^2) + t^7.81/(g1^2*g3^2*g4^2) + t^7.81/(g1^2*g2*g3*g4^2) + t^7.81/g4 + t^7.81/(g1^2*g2*g3^2*g4) + t^7.81/(g1^2*g2^2*g3*g4) + (g2*t^7.81)/(g3*g4) + (g3*t^7.81)/(g2*g4) + g1^2*g2*g4*t^7.81 + (g4*t^7.81)/(g2*g3) + g1^2*g3*g4*t^7.81 + g1^2*g4^2*t^7.81 + g2^3*g3^3*g4^2*t^8. + g2^3*g3^2*g4^3*t^8. + g2^2*g3^3*g4^3*t^8. - g2*g3*g4*t^8.06 + (2*t^8.09)/(g1*g2) + g1*g2^2*t^8.09 + (2*t^8.09)/(g1*g3) + 2*g1*g2*g3*t^8.09 + g1*g3^2*t^8.09 + (2*t^8.09)/(g1*g4) + (g2*t^8.09)/(g1*g3*g4) + (g3*t^8.09)/(g1*g2*g4) + 2*g1*g2*g4*t^8.09 + (g4*t^8.09)/(g1*g2*g3) + 2*g1*g3*g4*t^8.09 + g1*g4^2*t^8.09 + t^8.12/g2^2 + g1^2*g2*t^8.12 + t^8.12/g3^2 + (2*t^8.12)/(g2*g3) + g1^2*g3*t^8.12 + t^8.12/g4^2 + t^8.12/(g1^2*g2*g3^2*g4^2) + t^8.12/(g1^2*g2^2*g3*g4^2) + (2*t^8.12)/(g2*g4) + t^8.12/(g1^2*g2^2*g3^2*g4) + (2*t^8.12)/(g3*g4) + g1^2*g4*t^8.12 + g2^4*g3^4*g4^4*t^8.26 + g2^3*g3^2*g4^2*t^8.32 + g2^2*g3^3*g4^2*t^8.32 + g2^2*g3^2*g4^3*t^8.32 + g2^2*t^8.38 + g3^2*t^8.38 + g4^2*t^8.38 + g1*g2*t^8.41 + t^8.41/(g1*g2*g3) + g1*g3*t^8.41 + t^8.41/(g1*g2*g4) + t^8.41/(g1*g3*g4) + g1*g4*t^8.41 + g1^2*t^8.44 + t^8.44/(g1^2*g2^2*g3^2*g4^2) + t^8.44/(g2*g3*g4) - g2*t^8.69 - g3*t^8.69 - g4*t^8.69 - g1*t^8.72 - t^8.72/(g1*g2*g3*g4) + g2^2*g3^2*g4*t^8.94 + g2^2*g3*g4^2*t^8.94 + g2*g3^2*g4^2*t^8.94 - t^4.5/y - (g2*g3*g4*t^6.56)/y + (g2*g3*g4*t^8.06)/y + t^8.44/(g2*g3*g4*y) - (g2^2*g3^2*g4^2*t^8.63)/y + (g2^2*g3^2*g4*t^8.94)/y + (g2^2*g3*g4^2*t^8.94)/y + (g2*g3^2*g4^2*t^8.94)/y + (g2*t^8.97)/(g1*y) + (g3*t^8.97)/(g1*y) + (g4*t^8.97)/(g1*y) + (g1*g2^2*g3*g4*t^8.97)/y + (g1*g2*g3^2*g4*t^8.97)/y + (g1*g2*g3*g4^2*t^8.97)/y - t^4.5*y - g2*g3*g4*t^6.56*y + g2*g3*g4*t^8.06*y + (t^8.44*y)/(g2*g3*g4) - g2^2*g3^2*g4^2*t^8.63*y + g2^2*g3^2*g4*t^8.94*y + g2^2*g3*g4^2*t^8.94*y + g2*g3^2*g4^2*t^8.94*y + (g2*t^8.97*y)/g1 + (g3*t^8.97*y)/g1 + (g4*t^8.97*y)/g1 + g1*g2^2*g3*g4*t^8.97*y + g1*g2*g3^2*g4*t^8.97*y + g1*g2*g3*g4^2*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55599 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2q_2q_3$ 0.8824 1.0853 0.813 [X:[], M:[0.8549, 0.7609], q:[0.7137, 0.6196, 0.6196], qb:[0.5856, 0.5856, 0.5856], phi:[0.5726]] t^2.28 + t^2.56 + 3*t^3.51 + 6*t^3.62 + 3*t^3.9 + 2*t^4. + t^4.57 + t^4.85 + t^5.13 + 6*t^5.23 + 6*t^5.33 + 3*t^5.44 + 3*t^5.8 - 13*t^6. - t^4.72/y - t^4.72*y detail