Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55690 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3^2$ 0.8366 1.0194 0.8207 [X:[], M:[0.8786], q:[0.7197, 0.7197, 0.7197], qb:[0.5328, 0.5328, 0.5328], phi:[0.5607]] [X:[], M:[[0, 4, 4, 4]], q:[[-1, 2, 2, 2], [1, 0, 0, 0], [0, 1, 1, 1]], qb:[[0, 5, 0, 0], [0, 0, 5, 0], [0, 0, 0, 5]], phi:[[0, -2, -2, -2]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$ . -12 t^2.64 + 3*t^3.2 + 9*t^3.76 + 3*t^4.32 + 6*t^4.88 + t^5.27 + 3*t^5.83 - 12*t^6. + 15*t^6.39 - 9*t^6.56 + 27*t^6.95 - 9*t^7.12 + 45*t^7.51 - 11*t^7.68 + t^7.91 + 30*t^8.08 + 3*t^8.47 + 18*t^8.64 + 6*t^8.8 - t^4.68/y + (3*t^8.83)/y - t^4.68*y + 3*t^8.83*y g2^4*g3^4*g4^4*t^2.64 + g2^5*g3^5*t^3.2 + g2^5*g4^5*t^3.2 + g3^5*g4^5*t^3.2 + g1*g2^5*t^3.76 + g1*g3^5*t^3.76 + g2^6*g3*g4*t^3.76 + g2*g3^6*g4*t^3.76 + (g2^7*g3^2*g4^2*t^3.76)/g1 + (g2^2*g3^7*g4^2*t^3.76)/g1 + g1*g4^5*t^3.76 + g2*g3*g4^6*t^3.76 + (g2^2*g3^2*g4^7*t^3.76)/g1 + g1*g2*g3*g4*t^4.32 + g2^2*g3^2*g4^2*t^4.32 + (g2^3*g3^3*g4^3*t^4.32)/g1 + (g2^8*t^4.88)/(g3^2*g4^2) + (g2^3*g3^3*t^4.88)/g4^2 + (g3^8*t^4.88)/(g2^2*g4^2) + (g2^3*g4^3*t^4.88)/g3^2 + (g3^3*g4^3*t^4.88)/g2^2 + (g4^8*t^4.88)/(g2^2*g3^2) + g2^8*g3^8*g4^8*t^5.27 + g2^9*g3^9*g4^4*t^5.83 + g2^9*g3^4*g4^9*t^5.83 + g2^4*g3^9*g4^9*t^5.83 - 4*t^6. - (g2^5*t^6.)/g3^5 - (g3^5*t^6.)/g2^5 - (g2^5*t^6.)/g4^5 - (g3^5*t^6.)/g4^5 - (g1*t^6.)/(g2*g3*g4) - (g2*g3*g4*t^6.)/g1 - (g4^5*t^6.)/g2^5 - (g4^5*t^6.)/g3^5 + g2^10*g3^10*t^6.39 + g1*g2^9*g3^4*g4^4*t^6.39 + g1*g2^4*g3^9*g4^4*t^6.39 + 2*g2^10*g3^5*g4^5*t^6.39 + 2*g2^5*g3^10*g4^5*t^6.39 + (g2^11*g3^6*g4^6*t^6.39)/g1 + (g2^6*g3^11*g4^6*t^6.39)/g1 + g1*g2^4*g3^4*g4^9*t^6.39 + g2^10*g4^10*t^6.39 + 2*g2^5*g3^5*g4^10*t^6.39 + g3^10*g4^10*t^6.39 + (g2^6*g3^6*g4^11*t^6.39)/g1 - (g1*t^6.56)/g2^5 - (g1*t^6.56)/g3^5 - (g1*t^6.56)/g4^5 - (g2*g3*t^6.56)/g4^4 - (g2^2*g3^2*t^6.56)/(g1*g4^3) - (g2*g4*t^6.56)/g3^4 - (g3*g4*t^6.56)/g2^4 - (g2^2*g4^2*t^6.56)/(g1*g3^3) - (g3^2*g4^2*t^6.56)/(g1*g2^3) + g1*g2^10*g3^5*t^6.95 + g1*g2^5*g3^10*t^6.95 + g2^11*g3^6*g4*t^6.95 + g2^6*g3^11*g4*t^6.95 + (g2^12*g3^7*g4^2*t^6.95)/g1 + (g2^7*g3^12*g4^2*t^6.95)/g1 + g1*g2^10*g4^5*t^6.95 + 3*g1*g2^5*g3^5*g4^5*t^6.95 + g1*g3^10*g4^5*t^6.95 + g2^11*g3*g4^6*t^6.95 + 3*g2^6*g3^6*g4^6*t^6.95 + g2*g3^11*g4^6*t^6.95 + (g2^12*g3^2*g4^7*t^6.95)/g1 + (3*g2^7*g3^7*g4^7*t^6.95)/g1 + (g2^2*g3^12*g4^7*t^6.95)/g1 + g1*g2^5*g4^10*t^6.95 + g1*g3^5*g4^10*t^6.95 + g2^6*g3*g4^11*t^6.95 + g2*g3^6*g4^11*t^6.95 + (g2^7*g3^2*g4^12*t^6.95)/g1 + (g2^2*g3^7*g4^12*t^6.95)/g1 - (g1*g2*t^7.12)/(g3^4*g4^4) - (g1*g3*t^7.12)/(g2^4*g4^4) - (g2^2*t^7.12)/(g3^3*g4^3) - (g3^2*t^7.12)/(g2^3*g4^3) - (g2^3*t^7.12)/(g1*g3^2*g4^2) - (g3^3*t^7.12)/(g1*g2^2*g4^2) - (g1*g4*t^7.12)/(g2^4*g3^4) - (g4^2*t^7.12)/(g2^3*g3^3) - (g4^3*t^7.12)/(g1*g2^2*g3^2) + g1^2*g2^10*t^7.51 + g1^2*g2^5*g3^5*t^7.51 + g1^2*g3^10*t^7.51 + g1*g2^11*g3*g4*t^7.51 + 2*g1*g2^6*g3^6*g4*t^7.51 + g1*g2*g3^11*g4*t^7.51 + 2*g2^12*g3^2*g4^2*t^7.51 + 3*g2^7*g3^7*g4^2*t^7.51 + 2*g2^2*g3^12*g4^2*t^7.51 + (g2^13*g3^3*g4^3*t^7.51)/g1 + (2*g2^8*g3^8*g4^3*t^7.51)/g1 + (g2^3*g3^13*g4^3*t^7.51)/g1 + (g2^14*g3^4*g4^4*t^7.51)/g1^2 + (g2^9*g3^9*g4^4*t^7.51)/g1^2 + (g2^4*g3^14*g4^4*t^7.51)/g1^2 + g1^2*g2^5*g4^5*t^7.51 + g1^2*g3^5*g4^5*t^7.51 + 2*g1*g2^6*g3*g4^6*t^7.51 + 2*g1*g2*g3^6*g4^6*t^7.51 + 3*g2^7*g3^2*g4^7*t^7.51 + 3*g2^2*g3^7*g4^7*t^7.51 + (2*g2^8*g3^3*g4^8*t^7.51)/g1 + (2*g2^3*g3^8*g4^8*t^7.51)/g1 + (g2^9*g3^4*g4^9*t^7.51)/g1^2 + (g2^4*g3^9*g4^9*t^7.51)/g1^2 + g1^2*g4^10*t^7.51 + g1*g2*g3*g4^11*t^7.51 + 2*g2^2*g3^2*g4^12*t^7.51 + (g2^3*g3^3*g4^13*t^7.51)/g1 + (g2^4*g3^4*g4^14*t^7.51)/g1^2 - (g2^3*t^7.68)/(g3^2*g4^7) - (g3^3*t^7.68)/(g2^2*g4^7) - (g1*t^7.68)/(g2^3*g3^3*g4^3) - (g2^3*t^7.68)/(g3^7*g4^2) - (3*t^7.68)/(g2^2*g3^2*g4^2) - (g3^3*t^7.68)/(g2^7*g4^2) - t^7.68/(g1*g2*g3*g4) - (g4^3*t^7.68)/(g2^2*g3^7) - (g4^3*t^7.68)/(g2^7*g3^2) + g2^12*g3^12*g4^12*t^7.91 + (g2^13*g3^3*t^8.08)/g4^2 + (g2^8*g3^8*t^8.08)/g4^2 + (g2^3*g3^13*t^8.08)/g4^2 + g1^2*g2^6*g3*g4*t^8.08 + g1^2*g2*g3^6*g4*t^8.08 + g1*g2^7*g3^2*g4^2*t^8.08 + g1*g2^2*g3^7*g4^2*t^8.08 + (g2^13*g4^3*t^8.08)/g3^2 + 3*g2^8*g3^3*g4^3*t^8.08 + 3*g2^3*g3^8*g4^3*t^8.08 + (g3^13*g4^3*t^8.08)/g2^2 + (g2^9*g3^4*g4^4*t^8.08)/g1 + (g2^4*g3^9*g4^4*t^8.08)/g1 + (g2^10*g3^5*g4^5*t^8.08)/g1^2 + (g2^5*g3^10*g4^5*t^8.08)/g1^2 + g1^2*g2*g3*g4^6*t^8.08 + g1*g2^2*g3^2*g4^7*t^8.08 + (g2^8*g4^8*t^8.08)/g3^2 + 3*g2^3*g3^3*g4^8*t^8.08 + (g3^8*g4^8*t^8.08)/g2^2 + (g2^4*g3^4*g4^9*t^8.08)/g1 + (g2^5*g3^5*g4^10*t^8.08)/g1^2 + (g2^3*g4^13*t^8.08)/g3^2 + (g3^3*g4^13*t^8.08)/g2^2 + g2^13*g3^13*g4^8*t^8.47 + g2^13*g3^8*g4^13*t^8.47 + g2^8*g3^13*g4^13*t^8.47 + (g2^15*t^8.64)/g1 + (g2^10*g3^5*t^8.64)/g1 + (g2^5*g3^10*t^8.64)/g1 + (g3^15*t^8.64)/g1 + (g1*g2^13*t^8.64)/(g3^2*g4^2) + (g1*g2^8*g3^3*t^8.64)/g4^2 + (g1*g2^3*g3^8*t^8.64)/g4^2 + (g1*g3^13*t^8.64)/(g2^2*g4^2) + (g2^14*t^8.64)/(g3*g4) + (g3^14*t^8.64)/(g2*g4) + (g1*g2^8*g4^3*t^8.64)/g3^2 + (g1*g3^8*g4^3*t^8.64)/g2^2 - 3*g2^4*g3^4*g4^4*t^8.64 + (g2^10*g4^5*t^8.64)/g1 + (g3^10*g4^5*t^8.64)/g1 + (g1*g2^3*g4^8*t^8.64)/g3^2 + (g1*g3^3*g4^8*t^8.64)/g2^2 + (g2^5*g4^10*t^8.64)/g1 + (g3^5*g4^10*t^8.64)/g1 + (g1*g4^13*t^8.64)/(g2^2*g3^2) + (g4^14*t^8.64)/(g2*g3) + (g4^15*t^8.64)/g1 + t^8.8/g2^10 + t^8.8/g3^10 + t^8.8/(g2^5*g3^5) + t^8.8/g4^10 + t^8.8/(g2^5*g4^5) + t^8.8/(g3^5*g4^5) - t^4.68/(g2^2*g3^2*g4^2*y) + (g2^9*g3^9*g4^4*t^8.83)/y + (g2^9*g3^4*g4^9*t^8.83)/y + (g2^4*g3^9*g4^9*t^8.83)/y - (t^4.68*y)/(g2^2*g3^2*g4^2) + g2^9*g3^9*g4^4*t^8.83*y + g2^9*g3^4*g4^9*t^8.83*y + g2^4*g3^9*g4^9*t^8.83*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55729 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3^2$ + $ M_1^2$ 0.8242 0.9805 0.8406 [X:[], M:[1.0], q:[0.75, 0.75, 0.75], qb:[0.5833, 0.5833, 0.5833], phi:[0.5]] t^3. + 3*t^3.5 + 9*t^4. + 3*t^4.5 + 6*t^5. - 11*t^6. - t^4.5/y - t^4.5*y detail {a: 211/256, c: 251/256, M1: 1, q1: 3/4, q2: 3/4, q3: 3/4, qb1: 7/12, qb2: 7/12, qb3: 7/12, phi1: 1/2}
55726 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ \phi_1q_3^2$ + $ M_2q_2\tilde{q}_1$ 0.8564 1.0547 0.8119 [X:[], M:[0.8886, 0.7161], q:[0.7084, 0.7359, 0.7222], qb:[0.548, 0.5314, 0.5314], phi:[0.5557]] t^2.15 + t^2.67 + t^3.19 + 2*t^3.24 + 2*t^3.72 + 2*t^3.76 + t^3.77 + 2*t^3.8 + t^3.81 + t^4.29 + t^4.3 + t^4.33 + t^4.37 + t^4.81 + 3*t^4.86 + 2*t^4.91 + t^4.95 + t^5.33 + t^5.34 + 2*t^5.39 + t^5.85 + 2*t^5.87 + 2*t^5.9 + 2*t^5.91 + t^5.92 - 6*t^6. - t^4.67/y - t^4.67*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55447 SU2adj1nf3 $\phi_1q_1q_2$ + $ M_1\phi_1^2$ 0.8544 1.0432 0.8191 [X:[], M:[0.8516], q:[0.7129, 0.7129, 0.5693], qb:[0.5693, 0.5693, 0.5693], phi:[0.5742]] t^2.55 + 6*t^3.42 + 8*t^3.85 + t^4.28 + t^5.11 + 10*t^5.14 + 6*t^5.97 - 17*t^6. - t^4.72/y - t^4.72*y detail