Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55659 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8544 | 1.0423 | 0.8198 | [X:[], M:[0.8556], q:[0.7139, 0.7139, 0.5695], qb:[0.5722, 0.5722, 0.5695], phi:[0.5722]] | [X:[], M:[[0, -2, -2, 0]], q:[[-1, -1, -1, 0], [1, 0, 0, 0], [0, -5, -5, -1]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], phi:[[0, 1, 1, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_1q_3$, $ q_2\tilde{q}_1$, $ q_1q_2$, $ M_1^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_3$ | . | -8 | t^2.57 + t^3.42 + 5*t^3.43 + 4*t^3.85 + 4*t^3.86 + t^4.28 + 4*t^5.13 + 4*t^5.14 + 3*t^5.15 + t^5.98 - 8*t^6. - 4*t^6.01 + 4*t^6.42 - 4*t^6.43 + t^6.83 + 4*t^6.84 + 11*t^6.85 + 4*t^6.86 + t^6.87 + 4*t^7.27 + 28*t^7.28 + 11*t^7.7 + 12*t^7.71 - 2*t^7.72 + 4*t^8.55 + 12*t^8.56 + 20*t^8.57 + 6*t^8.58 + 12*t^8.98 + 12*t^8.99 - t^4.72/y + t^8.98/y + (4*t^8.99)/y - t^4.72*y + t^8.98*y + 4*t^8.99*y | t^2.57/(g2^2*g3^2) + t^3.42/(g2^5*g3^5) + g2^2*g3^2*t^3.43 + t^3.43/(g2^3*g3^5*g4) + t^3.43/(g2^5*g3^3*g4) + g2^2*g4*t^3.43 + g3^2*g4*t^3.43 + t^3.85/(g1*g2^6*g3^6*g4) + (g1*t^3.85)/(g2^5*g3^5*g4) + g1*g4*t^3.85 + (g4*t^3.85)/(g1*g2*g3) + g1*g2^2*t^3.86 + (g2*t^3.86)/(g1*g3) + (g3*t^3.86)/(g1*g2) + g1*g3^2*t^3.86 + t^4.28/(g2*g3) + (2*t^5.13)/(g2^4*g3^4) + t^5.13/(g2^9*g3^9*g4^2) + g2*g3*g4^2*t^5.13 + t^5.14/(g2^2*g3^4*g4) + t^5.14/(g2^4*g3^2*g4) + g2^3*g3*g4*t^5.14 + g2*g3^3*g4*t^5.14 + g2^5*g3*t^5.15 + g2^3*g3^3*t^5.15 + g2*g3^5*t^5.15 + t^5.98/(g2^7*g3^7) - 4*t^6. - (g2^2*t^6.)/g3^2 - (g3^2*t^6.)/g2^2 - t^6./(g2^5*g3^5*g4^2) - g2^5*g3^5*g4^2*t^6. - (g2^2*t^6.01)/g4 - (g3^2*t^6.01)/g4 - g2^7*g3^5*g4*t^6.01 - g2^5*g3^7*g4*t^6.01 + t^6.42/(g1*g2^8*g3^8*g4) + (g1*t^6.42)/(g2^7*g3^7*g4) + (g4*t^6.42)/(g1*g2^3*g3^3) + (g1*g4*t^6.42)/(g2^2*g3^2) - (g1*t^6.43)/g4 - t^6.43/(g1*g2*g3*g4) - (g2^4*g3^4*g4*t^6.43)/g1 - g1*g2^5*g3^5*g4*t^6.43 + t^6.83/(g2^10*g3^10) + t^6.84/(g2^8*g3^10*g4) + t^6.84/(g2^10*g3^8*g4) + (g4*t^6.84)/(g2^3*g3^5) + (g4*t^6.84)/(g2^5*g3^3) + t^6.85/(g2*g3^5) + (3*t^6.85)/(g2^3*g3^3) + t^6.85/(g2^5*g3) + t^6.85/(g2^6*g3^10*g4^2) + t^6.85/(g2^8*g3^8*g4^2) + t^6.85/(g2^10*g3^6*g4^2) + g2^4*g4^2*t^6.85 + g2^2*g3^2*g4^2*t^6.85 + g3^4*g4^2*t^6.85 + t^6.86/(g2*g3^3*g4) + t^6.86/(g2^3*g3*g4) + g2^4*g3^2*g4*t^6.86 + g2^2*g3^4*g4*t^6.86 + g2^4*g3^4*t^6.87 + t^7.27/(g1*g2^11*g3^11*g4) + (g1*t^7.27)/(g2^10*g3^10*g4) + (g4*t^7.27)/(g1*g2^6*g3^6) + (g1*g4*t^7.27)/(g2^5*g3^5) + (2*t^7.28)/(g1*g2^4*g3^6) + (2*g1*t^7.28)/(g2^3*g3^5) + (2*t^7.28)/(g1*g2^6*g3^4) + (2*g1*t^7.28)/(g2^5*g3^3) + t^7.28/(g1*g2^9*g3^11*g4^2) + (g1*t^7.28)/(g2^8*g3^10*g4^2) + t^7.28/(g1*g2^11*g3^9*g4^2) + (g1*t^7.28)/(g2^10*g3^8*g4^2) + t^7.28/(g1*g2^2*g3^6*g4) + (g1*t^7.28)/(g2*g3^5*g4) + t^7.28/(g1*g2^4*g3^4*g4) + (g1*t^7.28)/(g2^3*g3^3*g4) + t^7.28/(g1*g2^6*g3^2*g4) + (g1*t^7.28)/(g2^5*g3*g4) + g1*g2^4*g4*t^7.28 + (g2^3*g4*t^7.28)/(g1*g3) + (g2*g3*g4*t^7.28)/g1 + g1*g2^2*g3^2*g4*t^7.28 + (g3^3*g4*t^7.28)/(g1*g2) + g1*g3^4*g4*t^7.28 + g1*g2^2*g4^2*t^7.28 + (g2*g4^2*t^7.28)/(g1*g3) + (g3*g4^2*t^7.28)/(g1*g2) + g1*g3^2*g4^2*t^7.28 + t^7.7/(g1^2*g2^7*g3^7) + (3*t^7.7)/(g2^6*g3^6) + (g1^2*t^7.7)/(g2^5*g3^5) + t^7.7/(g1^2*g2^12*g3^12*g4^2) + t^7.7/(g2^11*g3^11*g4^2) + (g1^2*t^7.7)/(g2^10*g3^10*g4^2) + g1^2*g4^2*t^7.7 + (g4^2*t^7.7)/(g1^2*g2^2*g3^2) + (g4^2*t^7.7)/(g2*g3) + t^7.71/(g1^2*g2^5*g3^7*g4) + t^7.71/(g2^4*g3^6*g4) + t^7.71/(g1^2*g2^7*g3^5*g4) + (g1^2*t^7.71)/(g2^3*g3^5*g4) + t^7.71/(g2^6*g3^4*g4) + (g1^2*t^7.71)/(g2^5*g3^3*g4) + (g4*t^7.71)/(g1^2*g2^2) + g1^2*g2^2*g4*t^7.71 + (g4*t^7.71)/(g1^2*g3^2) + (g2*g4*t^7.71)/g3 + (g3*g4*t^7.71)/g2 + g1^2*g3^2*g4*t^7.71 + t^7.72/g1^2 + g1^2*g2^4*t^7.72 + (g2^2*t^7.72)/(g1^2*g3^2) - 2*g2*g3*t^7.72 + (g3^2*t^7.72)/(g1^2*g2^2) + g1^2*g2^2*g3^2*t^7.72 + g1^2*g3^4*t^7.72 - t^7.72/(g2^4*g3^4*g4^2) - (g2^3*g3*t^7.72)/g4 - (g2*g3^3*t^7.72)/g4 - g2^8*g3^6*g4*t^7.72 - g2^6*g3^8*g4*t^7.72 - g2^6*g3^6*g4^2*t^7.72 + (2*t^8.55)/(g2^9*g3^9) + t^8.55/(g2^14*g3^14*g4^2) + (g4^2*t^8.55)/(g2^4*g3^4) + t^8.56/(g2^12*g3^14*g4^3) + t^8.56/(g2^14*g3^12*g4^3) + (2*t^8.56)/(g2^7*g3^9*g4) + (2*t^8.56)/(g2^9*g3^7*g4) + (2*g4*t^8.56)/(g2^2*g3^4) + (2*g4*t^8.56)/(g2^4*g3^2) + g2^3*g3*g4^3*t^8.56 + g2*g3^3*g4^3*t^8.56 + (2*t^8.57)/g2^4 + (2*t^8.57)/g3^4 - t^8.57/(g1^2*g2^3*g3^3) - (g1^2*t^8.57)/(g2*g3) + t^8.57/(g2^5*g3^9*g4^2) + t^8.57/(g2^7*g3^7*g4^2) + t^8.57/(g2^9*g3^5*g4^2) + (2*t^8.57)/(g2^2*g4) + (g2^2*t^8.57)/(g3^4*g4) + (2*t^8.57)/(g3^2*g4) + (g3^2*t^8.57)/(g2^4*g4) + g2^7*g3*g4*t^8.57 + 2*g2^5*g3^3*g4*t^8.57 + 2*g2^3*g3^5*g4*t^8.57 + g2*g3^7*g4*t^8.57 + g2^5*g3*g4^2*t^8.57 + g2^3*g3^3*g4^2*t^8.57 + g2*g3^5*g4^2*t^8.57 + g2^7*g3^3*t^8.58 + 2*g2^5*g3^5*t^8.58 + g2^3*g3^7*t^8.58 + t^8.58/g4^2 + g2^10*g3^10*g4^2*t^8.58 + t^8.98/(g1*g2^15*g3^15*g4^3) + (g1*t^8.98)/(g2^14*g3^14*g4^3) + (2*t^8.98)/(g1*g2^10*g3^10*g4) + (2*g1*t^8.98)/(g2^9*g3^9*g4) + (2*g4*t^8.98)/(g1*g2^5*g3^5) + (2*g1*g4*t^8.98)/(g2^4*g3^4) + (g4^3*t^8.98)/g1 + g1*g2*g3*g4^3*t^8.98 + t^8.99/(g1*g2^3*g3^5) + (g1*t^8.99)/(g2^2*g3^4) + t^8.99/(g1*g2^5*g3^3) + (g1*t^8.99)/(g2^4*g3^2) + t^8.99/(g1*g2^8*g3^10*g4^2) + (g1*t^8.99)/(g2^7*g3^9*g4^2) + t^8.99/(g1*g2^10*g3^8*g4^2) + (g1*t^8.99)/(g2^9*g3^7*g4^2) + (g2^2*g4^2*t^8.99)/g1 + g1*g2^3*g3*g4^2*t^8.99 + (g3^2*g4^2*t^8.99)/g1 + g1*g2*g3^3*g4^2*t^8.99 - (g2*g3*t^4.72)/y + t^8.98/(g2^7*g3^7*y) + t^8.99/(g2^5*g3^7*g4*y) + t^8.99/(g2^7*g3^5*g4*y) + (g4*t^8.99)/(g2^2*y) + (g4*t^8.99)/(g3^2*y) - g2*g3*t^4.72*y + (t^8.98*y)/(g2^7*g3^7) + (t^8.99*y)/(g2^5*g3^7*g4) + (t^8.99*y)/(g2^7*g3^5*g4) + (g4*t^8.99*y)/g2^2 + (g4*t^8.99*y)/g3^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55748 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ | 0.8359 | 1.0133 | 0.825 | [X:[], M:[0.9036], q:[0.7259, 0.7259, 0.7259], qb:[0.5482, 0.5482, 0.533], phi:[0.5482]] | t^2.71 + 2*t^3.24 + t^3.29 + 3*t^3.78 + 6*t^3.82 + 3*t^4.36 + t^4.84 + 2*t^4.89 + 3*t^4.93 + t^5.42 - 7*t^6. - t^4.64/y - t^4.64*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55447 | SU2adj1nf3 | $\phi_1q_1q_2$ + $ M_1\phi_1^2$ | 0.8544 | 1.0432 | 0.8191 | [X:[], M:[0.8516], q:[0.7129, 0.7129, 0.5693], qb:[0.5693, 0.5693, 0.5693], phi:[0.5742]] | t^2.55 + 6*t^3.42 + 8*t^3.85 + t^4.28 + t^5.11 + 10*t^5.14 + 6*t^5.97 - 17*t^6. - t^4.72/y - t^4.72*y | detail |