Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55429 SU2adj1nf3 $\phi_1q_1^2$ 0.8526 1.0268 0.8304 [X:[], M:[], q:[0.7213, 0.6098, 0.6098], qb:[0.6098, 0.6098, 0.6098], phi:[0.5574]] [X:[], M:[], q:[[1, 1, 1, 1, 1], [7, 0, 0, 0, 0], [0, 7, 0, 0, 0]], qb:[[0, 0, 7, 0, 0], [0, 0, 0, 7, 0], [0, 0, 0, 0, 7]], phi:[[-2, -2, -2, -2, -2]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_2q_3$, $ q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ . -25 t^3.34 + 10*t^3.66 + 5*t^3.99 + 15*t^5.33 - 25*t^6. - 5*t^6.33 + t^6.69 + 10*t^7. + 50*t^7.32 + 40*t^7.65 - 24*t^7.67 - 5*t^8.32 + 15*t^8.34 - t^8.66 + 15*t^8.68 + 105*t^8.99 - t^4.67/y + t^7.33/y - t^8.02/y - t^4.67*y + t^7.33*y - t^8.02*y t^3.34/(g1^4*g2^4*g3^4*g4^4*g5^4) + g1^7*g2^7*t^3.66 + g1^7*g3^7*t^3.66 + g2^7*g3^7*t^3.66 + g1^7*g4^7*t^3.66 + g2^7*g4^7*t^3.66 + g3^7*g4^7*t^3.66 + g1^7*g5^7*t^3.66 + g2^7*g5^7*t^3.66 + g3^7*g5^7*t^3.66 + g4^7*g5^7*t^3.66 + g1^8*g2*g3*g4*g5*t^3.99 + g1*g2^8*g3*g4*g5*t^3.99 + g1*g2*g3^8*g4*g5*t^3.99 + g1*g2*g3*g4^8*g5*t^3.99 + g1*g2*g3*g4*g5^8*t^3.99 + (g1^12*t^5.33)/(g2^2*g3^2*g4^2*g5^2) + (g1^5*g2^5*t^5.33)/(g3^2*g4^2*g5^2) + (g2^12*t^5.33)/(g1^2*g3^2*g4^2*g5^2) + (g1^5*g3^5*t^5.33)/(g2^2*g4^2*g5^2) + (g2^5*g3^5*t^5.33)/(g1^2*g4^2*g5^2) + (g3^12*t^5.33)/(g1^2*g2^2*g4^2*g5^2) + (g1^5*g4^5*t^5.33)/(g2^2*g3^2*g5^2) + (g2^5*g4^5*t^5.33)/(g1^2*g3^2*g5^2) + (g3^5*g4^5*t^5.33)/(g1^2*g2^2*g5^2) + (g4^12*t^5.33)/(g1^2*g2^2*g3^2*g5^2) + (g1^5*g5^5*t^5.33)/(g2^2*g3^2*g4^2) + (g2^5*g5^5*t^5.33)/(g1^2*g3^2*g4^2) + (g3^5*g5^5*t^5.33)/(g1^2*g2^2*g4^2) + (g4^5*g5^5*t^5.33)/(g1^2*g2^2*g3^2) + (g5^12*t^5.33)/(g1^2*g2^2*g3^2*g4^2) - 5*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 - (g1^7*t^6.)/g4^7 - (g2^7*t^6.)/g4^7 - (g3^7*t^6.)/g4^7 - (g4^7*t^6.)/g1^7 - (g4^7*t^6.)/g2^7 - (g4^7*t^6.)/g3^7 - (g1^7*t^6.)/g5^7 - (g2^7*t^6.)/g5^7 - (g3^7*t^6.)/g5^7 - (g4^7*t^6.)/g5^7 - (g5^7*t^6.)/g1^7 - (g5^7*t^6.)/g2^7 - (g5^7*t^6.)/g3^7 - (g5^7*t^6.)/g4^7 - (g1*g2*g3*g4*t^6.33)/g5^6 - (g1*g2*g3*g5*t^6.33)/g4^6 - (g1*g2*g4*g5*t^6.33)/g3^6 - (g1*g3*g4*g5*t^6.33)/g2^6 - (g2*g3*g4*g5*t^6.33)/g1^6 + t^6.69/(g1^8*g2^8*g3^8*g4^8*g5^8) + (g1^3*g2^3*t^7.)/(g3^4*g4^4*g5^4) + (g1^3*g3^3*t^7.)/(g2^4*g4^4*g5^4) + (g2^3*g3^3*t^7.)/(g1^4*g4^4*g5^4) + (g1^3*g4^3*t^7.)/(g2^4*g3^4*g5^4) + (g2^3*g4^3*t^7.)/(g1^4*g3^4*g5^4) + (g3^3*g4^3*t^7.)/(g1^4*g2^4*g5^4) + (g1^3*g5^3*t^7.)/(g2^4*g3^4*g4^4) + (g2^3*g5^3*t^7.)/(g1^4*g3^4*g4^4) + (g3^3*g5^3*t^7.)/(g1^4*g2^4*g4^4) + (g4^3*g5^3*t^7.)/(g1^4*g2^4*g3^4) + g1^14*g2^14*t^7.32 + g1^14*g2^7*g3^7*t^7.32 + g1^7*g2^14*g3^7*t^7.32 + g1^14*g3^14*t^7.32 + g1^7*g2^7*g3^14*t^7.32 + g2^14*g3^14*t^7.32 + g1^14*g2^7*g4^7*t^7.32 + g1^7*g2^14*g4^7*t^7.32 + g1^14*g3^7*g4^7*t^7.32 + 2*g1^7*g2^7*g3^7*g4^7*t^7.32 + g2^14*g3^7*g4^7*t^7.32 + g1^7*g3^14*g4^7*t^7.32 + g2^7*g3^14*g4^7*t^7.32 + g1^14*g4^14*t^7.32 + g1^7*g2^7*g4^14*t^7.32 + g2^14*g4^14*t^7.32 + g1^7*g3^7*g4^14*t^7.32 + g2^7*g3^7*g4^14*t^7.32 + g3^14*g4^14*t^7.32 + g1^14*g2^7*g5^7*t^7.32 + g1^7*g2^14*g5^7*t^7.32 + g1^14*g3^7*g5^7*t^7.32 + 2*g1^7*g2^7*g3^7*g5^7*t^7.32 + g2^14*g3^7*g5^7*t^7.32 + g1^7*g3^14*g5^7*t^7.32 + g2^7*g3^14*g5^7*t^7.32 + g1^14*g4^7*g5^7*t^7.32 + 2*g1^7*g2^7*g4^7*g5^7*t^7.32 + g2^14*g4^7*g5^7*t^7.32 + 2*g1^7*g3^7*g4^7*g5^7*t^7.32 + 2*g2^7*g3^7*g4^7*g5^7*t^7.32 + g3^14*g4^7*g5^7*t^7.32 + g1^7*g4^14*g5^7*t^7.32 + g2^7*g4^14*g5^7*t^7.32 + g3^7*g4^14*g5^7*t^7.32 + g1^14*g5^14*t^7.32 + g1^7*g2^7*g5^14*t^7.32 + g2^14*g5^14*t^7.32 + g1^7*g3^7*g5^14*t^7.32 + g2^7*g3^7*g5^14*t^7.32 + g3^14*g5^14*t^7.32 + g1^7*g4^7*g5^14*t^7.32 + g2^7*g4^7*g5^14*t^7.32 + g3^7*g4^7*g5^14*t^7.32 + g4^14*g5^14*t^7.32 + g1^15*g2^8*g3*g4*g5*t^7.65 + g1^8*g2^15*g3*g4*g5*t^7.65 + g1^15*g2*g3^8*g4*g5*t^7.65 + 2*g1^8*g2^8*g3^8*g4*g5*t^7.65 + g1*g2^15*g3^8*g4*g5*t^7.65 + g1^8*g2*g3^15*g4*g5*t^7.65 + g1*g2^8*g3^15*g4*g5*t^7.65 + g1^15*g2*g3*g4^8*g5*t^7.65 + 2*g1^8*g2^8*g3*g4^8*g5*t^7.65 + g1*g2^15*g3*g4^8*g5*t^7.65 + 2*g1^8*g2*g3^8*g4^8*g5*t^7.65 + 2*g1*g2^8*g3^8*g4^8*g5*t^7.65 + g1*g2*g3^15*g4^8*g5*t^7.65 + g1^8*g2*g3*g4^15*g5*t^7.65 + g1*g2^8*g3*g4^15*g5*t^7.65 + g1*g2*g3^8*g4^15*g5*t^7.65 + g1^15*g2*g3*g4*g5^8*t^7.65 + 2*g1^8*g2^8*g3*g4*g5^8*t^7.65 + g1*g2^15*g3*g4*g5^8*t^7.65 + 2*g1^8*g2*g3^8*g4*g5^8*t^7.65 + 2*g1*g2^8*g3^8*g4*g5^8*t^7.65 + g1*g2*g3^15*g4*g5^8*t^7.65 + 2*g1^8*g2*g3*g4^8*g5^8*t^7.65 + 2*g1*g2^8*g3*g4^8*g5^8*t^7.65 + 2*g1*g2*g3^8*g4^8*g5^8*t^7.65 + g1*g2*g3*g4^15*g5^8*t^7.65 + g1^8*g2*g3*g4*g5^15*t^7.65 + g1*g2^8*g3*g4*g5^15*t^7.65 + g1*g2*g3^8*g4*g5^15*t^7.65 + g1*g2*g3*g4^8*g5^15*t^7.65 - (g1^5*t^7.67)/(g2^2*g3^2*g4^2*g5^9) - (g2^5*t^7.67)/(g1^2*g3^2*g4^2*g5^9) - (g3^5*t^7.67)/(g1^2*g2^2*g4^2*g5^9) - (g4^5*t^7.67)/(g1^2*g2^2*g3^2*g5^9) - (g1^5*t^7.67)/(g2^2*g3^2*g4^9*g5^2) - (g2^5*t^7.67)/(g1^2*g3^2*g4^9*g5^2) - (g3^5*t^7.67)/(g1^2*g2^2*g4^9*g5^2) - (g1^5*t^7.67)/(g2^2*g3^9*g4^2*g5^2) - (g2^5*t^7.67)/(g1^2*g3^9*g4^2*g5^2) - (g1^5*t^7.67)/(g2^9*g3^2*g4^2*g5^2) - (4*t^7.67)/(g1^2*g2^2*g3^2*g4^2*g5^2) - (g2^5*t^7.67)/(g1^9*g3^2*g4^2*g5^2) - (g3^5*t^7.67)/(g1^2*g2^9*g4^2*g5^2) - (g3^5*t^7.67)/(g1^9*g2^2*g4^2*g5^2) - (g4^5*t^7.67)/(g1^2*g2^2*g3^9*g5^2) - (g4^5*t^7.67)/(g1^2*g2^9*g3^2*g5^2) - (g4^5*t^7.67)/(g1^9*g2^2*g3^2*g5^2) - (g5^5*t^7.67)/(g1^2*g2^2*g3^2*g4^9) - (g5^5*t^7.67)/(g1^2*g2^2*g3^9*g4^2) - (g5^5*t^7.67)/(g1^2*g2^9*g3^2*g4^2) - (g5^5*t^7.67)/(g1^9*g2^2*g3^2*g4^2) - g1^10*g2^3*g3^3*g4^3*g5^3*t^8.32 - g1^3*g2^10*g3^3*g4^3*g5^3*t^8.32 - g1^3*g2^3*g3^10*g4^3*g5^3*t^8.32 - g1^3*g2^3*g3^3*g4^10*g5^3*t^8.32 - g1^3*g2^3*g3^3*g4^3*g5^10*t^8.32 + t^8.34/g1^14 + t^8.34/g2^14 + t^8.34/(g1^7*g2^7) + t^8.34/g3^14 + t^8.34/(g1^7*g3^7) + t^8.34/(g2^7*g3^7) + t^8.34/g4^14 + t^8.34/(g1^7*g4^7) + t^8.34/(g2^7*g4^7) + t^8.34/(g3^7*g4^7) + t^8.34/g5^14 + t^8.34/(g1^7*g5^7) + t^8.34/(g2^7*g5^7) + t^8.34/(g3^7*g5^7) + t^8.34/(g4^7*g5^7) - g1^4*g2^4*g3^4*g4^4*g5^4*t^8.66 + (g1^8*t^8.68)/(g2^6*g3^6*g4^6*g5^6) + (g1*g2*t^8.68)/(g3^6*g4^6*g5^6) + (g2^8*t^8.68)/(g1^6*g3^6*g4^6*g5^6) + (g1*g3*t^8.68)/(g2^6*g4^6*g5^6) + (g2*g3*t^8.68)/(g1^6*g4^6*g5^6) + (g3^8*t^8.68)/(g1^6*g2^6*g4^6*g5^6) + (g1*g4*t^8.68)/(g2^6*g3^6*g5^6) + (g2*g4*t^8.68)/(g1^6*g3^6*g5^6) + (g3*g4*t^8.68)/(g1^6*g2^6*g5^6) + (g4^8*t^8.68)/(g1^6*g2^6*g3^6*g5^6) + (g1*g5*t^8.68)/(g2^6*g3^6*g4^6) + (g2*g5*t^8.68)/(g1^6*g3^6*g4^6) + (g3*g5*t^8.68)/(g1^6*g2^6*g4^6) + (g4*g5*t^8.68)/(g1^6*g2^6*g3^6) + (g5^8*t^8.68)/(g1^6*g2^6*g3^6*g4^6) + (g1^19*g2^5*t^8.99)/(g3^2*g4^2*g5^2) + (g1^12*g2^12*t^8.99)/(g3^2*g4^2*g5^2) + (g1^5*g2^19*t^8.99)/(g3^2*g4^2*g5^2) + (g1^19*g3^5*t^8.99)/(g2^2*g4^2*g5^2) + (2*g1^12*g2^5*g3^5*t^8.99)/(g4^2*g5^2) + (2*g1^5*g2^12*g3^5*t^8.99)/(g4^2*g5^2) + (g2^19*g3^5*t^8.99)/(g1^2*g4^2*g5^2) + (g1^12*g3^12*t^8.99)/(g2^2*g4^2*g5^2) + (2*g1^5*g2^5*g3^12*t^8.99)/(g4^2*g5^2) + (g2^12*g3^12*t^8.99)/(g1^2*g4^2*g5^2) + (g1^5*g3^19*t^8.99)/(g2^2*g4^2*g5^2) + (g2^5*g3^19*t^8.99)/(g1^2*g4^2*g5^2) + (g1^19*g4^5*t^8.99)/(g2^2*g3^2*g5^2) + (2*g1^12*g2^5*g4^5*t^8.99)/(g3^2*g5^2) + (2*g1^5*g2^12*g4^5*t^8.99)/(g3^2*g5^2) + (g2^19*g4^5*t^8.99)/(g1^2*g3^2*g5^2) + (2*g1^12*g3^5*g4^5*t^8.99)/(g2^2*g5^2) + (3*g1^5*g2^5*g3^5*g4^5*t^8.99)/g5^2 + (2*g2^12*g3^5*g4^5*t^8.99)/(g1^2*g5^2) + (2*g1^5*g3^12*g4^5*t^8.99)/(g2^2*g5^2) + (2*g2^5*g3^12*g4^5*t^8.99)/(g1^2*g5^2) + (g3^19*g4^5*t^8.99)/(g1^2*g2^2*g5^2) + (g1^12*g4^12*t^8.99)/(g2^2*g3^2*g5^2) + (2*g1^5*g2^5*g4^12*t^8.99)/(g3^2*g5^2) + (g2^12*g4^12*t^8.99)/(g1^2*g3^2*g5^2) + (2*g1^5*g3^5*g4^12*t^8.99)/(g2^2*g5^2) + (2*g2^5*g3^5*g4^12*t^8.99)/(g1^2*g5^2) + (g3^12*g4^12*t^8.99)/(g1^2*g2^2*g5^2) + (g1^5*g4^19*t^8.99)/(g2^2*g3^2*g5^2) + (g2^5*g4^19*t^8.99)/(g1^2*g3^2*g5^2) + (g3^5*g4^19*t^8.99)/(g1^2*g2^2*g5^2) + (g1^19*g5^5*t^8.99)/(g2^2*g3^2*g4^2) + (2*g1^12*g2^5*g5^5*t^8.99)/(g3^2*g4^2) + (2*g1^5*g2^12*g5^5*t^8.99)/(g3^2*g4^2) + (g2^19*g5^5*t^8.99)/(g1^2*g3^2*g4^2) + (2*g1^12*g3^5*g5^5*t^8.99)/(g2^2*g4^2) + (3*g1^5*g2^5*g3^5*g5^5*t^8.99)/g4^2 + (2*g2^12*g3^5*g5^5*t^8.99)/(g1^2*g4^2) + (2*g1^5*g3^12*g5^5*t^8.99)/(g2^2*g4^2) + (2*g2^5*g3^12*g5^5*t^8.99)/(g1^2*g4^2) + (g3^19*g5^5*t^8.99)/(g1^2*g2^2*g4^2) + (2*g1^12*g4^5*g5^5*t^8.99)/(g2^2*g3^2) + (3*g1^5*g2^5*g4^5*g5^5*t^8.99)/g3^2 + (2*g2^12*g4^5*g5^5*t^8.99)/(g1^2*g3^2) + (3*g1^5*g3^5*g4^5*g5^5*t^8.99)/g2^2 + (3*g2^5*g3^5*g4^5*g5^5*t^8.99)/g1^2 + (2*g3^12*g4^5*g5^5*t^8.99)/(g1^2*g2^2) + (2*g1^5*g4^12*g5^5*t^8.99)/(g2^2*g3^2) + (2*g2^5*g4^12*g5^5*t^8.99)/(g1^2*g3^2) + (2*g3^5*g4^12*g5^5*t^8.99)/(g1^2*g2^2) + (g4^19*g5^5*t^8.99)/(g1^2*g2^2*g3^2) + (g1^12*g5^12*t^8.99)/(g2^2*g3^2*g4^2) + (2*g1^5*g2^5*g5^12*t^8.99)/(g3^2*g4^2) + (g2^12*g5^12*t^8.99)/(g1^2*g3^2*g4^2) + (2*g1^5*g3^5*g5^12*t^8.99)/(g2^2*g4^2) + (2*g2^5*g3^5*g5^12*t^8.99)/(g1^2*g4^2) + (g3^12*g5^12*t^8.99)/(g1^2*g2^2*g4^2) + (2*g1^5*g4^5*g5^12*t^8.99)/(g2^2*g3^2) + (2*g2^5*g4^5*g5^12*t^8.99)/(g1^2*g3^2) + (2*g3^5*g4^5*g5^12*t^8.99)/(g1^2*g2^2) + (g4^12*g5^12*t^8.99)/(g1^2*g2^2*g3^2) + (g1^5*g5^19*t^8.99)/(g2^2*g3^2*g4^2) + (g2^5*g5^19*t^8.99)/(g1^2*g3^2*g4^2) + (g3^5*g5^19*t^8.99)/(g1^2*g2^2*g4^2) + (g4^5*g5^19*t^8.99)/(g1^2*g2^2*g3^2) - t^4.67/(g1^2*g2^2*g3^2*g4^2*g5^2*y) + (g1^2*g2^2*g3^2*g4^2*g5^2*t^7.33)/y - t^8.02/(g1^6*g2^6*g3^6*g4^6*g5^6*y) - (t^4.67*y)/(g1^2*g2^2*g3^2*g4^2*g5^2) + g1^2*g2^2*g3^2*g4^2*g5^2*t^7.33*y - (t^8.02*y)/(g1^6*g2^6*g3^6*g4^6*g5^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55442 $\phi_1q_1^2$ + $ M_1\phi_1^2$ 0.865 1.0573 0.8182 [X:[], M:[0.8356], q:[0.7089, 0.5925, 0.5925], qb:[0.5925, 0.5925, 0.5925], phi:[0.5822]] t^2.51 + 10*t^3.55 + 5*t^3.9 + t^5.01 + 15*t^5.3 - 25*t^6. - t^4.75/y - t^4.75*y detail
55450 $\phi_1q_1^2$ + $ M_1q_2q_3$ 0.8714 1.0594 0.8226 [X:[], M:[0.7357], q:[0.7257, 0.6322, 0.6322], qb:[0.6051, 0.6051, 0.6051], phi:[0.5487]] t^2.21 + t^3.29 + 3*t^3.63 + 6*t^3.71 + 3*t^3.99 + 2*t^4.07 + t^4.41 + 6*t^5.28 + 6*t^5.36 + 3*t^5.44 + t^5.5 + 3*t^5.84 - 13*t^6. - t^4.65/y - t^4.65*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55428 SU2adj1nf3 . 0.8588 1.0348 0.8299 [X:[], M:[], q:[0.6245, 0.6245, 0.6245], qb:[0.6245, 0.6245, 0.6245], phi:[0.5632]] t^3.38 + 15*t^3.75 + 21*t^5.44 - 36*t^6. - t^4.69/y - t^4.69*y detail