Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55432 SU2adj1nf3 $M_1\phi_1^2$ 0.872 1.0666 0.8176 [X:[], M:[0.8251], q:[0.6084, 0.6084, 0.6084], qb:[0.6084, 0.6084, 0.6084], phi:[0.5875]] [X:[], M:[[2, 2, 2, 2, 2, 2]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ q_1q_2$, $ M_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ . -36 t^2.48 + 15*t^3.65 + t^4.95 + 21*t^5.41 - 36*t^6. + 15*t^6.13 + 105*t^7.3 + t^7.43 - 35*t^7.76 + 21*t^8.35 - 36*t^8.48 + 15*t^8.6 - t^4.76/y - t^4.76*y g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.48 + g1^4*g2^4*t^3.65 + g1^4*g3^4*t^3.65 + g2^4*g3^4*t^3.65 + g1^4*g4^4*t^3.65 + g2^4*g4^4*t^3.65 + g3^4*g4^4*t^3.65 + g1^4*g5^4*t^3.65 + g2^4*g5^4*t^3.65 + g3^4*g5^4*t^3.65 + g4^4*g5^4*t^3.65 + g1^4*g6^4*t^3.65 + g2^4*g6^4*t^3.65 + g3^4*g6^4*t^3.65 + g4^4*g6^4*t^3.65 + g5^4*g6^4*t^3.65 + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^4.95 + (g1^7*t^5.41)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.41)/(g3*g4*g5*g6) + (g2^7*t^5.41)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.41)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.41)/(g1*g4*g5*g6) + (g3^7*t^5.41)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.41)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.41)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.41)/(g1*g2*g5*g6) + (g4^7*t^5.41)/(g1*g2*g3*g5*g6) + (g1^3*g5^3*t^5.41)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.41)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.41)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.41)/(g1*g2*g3*g6) + (g5^7*t^5.41)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.41)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.41)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.41)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.41)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.41)/(g1*g2*g3*g4) + (g6^7*t^5.41)/(g1*g2*g3*g4*g5) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 - (g1^4*t^6.)/g5^4 - (g2^4*t^6.)/g5^4 - (g3^4*t^6.)/g5^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g1^4 - (g5^4*t^6.)/g2^4 - (g5^4*t^6.)/g3^4 - (g5^4*t^6.)/g4^4 - (g1^4*t^6.)/g6^4 - (g2^4*t^6.)/g6^4 - (g3^4*t^6.)/g6^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g1^4 - (g6^4*t^6.)/g2^4 - (g6^4*t^6.)/g3^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 + g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*t^6.13 + g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*t^6.13 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.13 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.13 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.13 + g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*t^6.13 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.13 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.13 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.13 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.13 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.13 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.13 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.13 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.13 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.13 + g1^8*g2^8*t^7.3 + g1^8*g2^4*g3^4*t^7.3 + g1^4*g2^8*g3^4*t^7.3 + g1^8*g3^8*t^7.3 + g1^4*g2^4*g3^8*t^7.3 + g2^8*g3^8*t^7.3 + g1^8*g2^4*g4^4*t^7.3 + g1^4*g2^8*g4^4*t^7.3 + g1^8*g3^4*g4^4*t^7.3 + 2*g1^4*g2^4*g3^4*g4^4*t^7.3 + g2^8*g3^4*g4^4*t^7.3 + g1^4*g3^8*g4^4*t^7.3 + g2^4*g3^8*g4^4*t^7.3 + g1^8*g4^8*t^7.3 + g1^4*g2^4*g4^8*t^7.3 + g2^8*g4^8*t^7.3 + g1^4*g3^4*g4^8*t^7.3 + g2^4*g3^4*g4^8*t^7.3 + g3^8*g4^8*t^7.3 + g1^8*g2^4*g5^4*t^7.3 + g1^4*g2^8*g5^4*t^7.3 + g1^8*g3^4*g5^4*t^7.3 + 2*g1^4*g2^4*g3^4*g5^4*t^7.3 + g2^8*g3^4*g5^4*t^7.3 + g1^4*g3^8*g5^4*t^7.3 + g2^4*g3^8*g5^4*t^7.3 + g1^8*g4^4*g5^4*t^7.3 + 2*g1^4*g2^4*g4^4*g5^4*t^7.3 + g2^8*g4^4*g5^4*t^7.3 + 2*g1^4*g3^4*g4^4*g5^4*t^7.3 + 2*g2^4*g3^4*g4^4*g5^4*t^7.3 + g3^8*g4^4*g5^4*t^7.3 + g1^4*g4^8*g5^4*t^7.3 + g2^4*g4^8*g5^4*t^7.3 + g3^4*g4^8*g5^4*t^7.3 + g1^8*g5^8*t^7.3 + g1^4*g2^4*g5^8*t^7.3 + g2^8*g5^8*t^7.3 + g1^4*g3^4*g5^8*t^7.3 + g2^4*g3^4*g5^8*t^7.3 + g3^8*g5^8*t^7.3 + g1^4*g4^4*g5^8*t^7.3 + g2^4*g4^4*g5^8*t^7.3 + g3^4*g4^4*g5^8*t^7.3 + g4^8*g5^8*t^7.3 + g1^8*g2^4*g6^4*t^7.3 + g1^4*g2^8*g6^4*t^7.3 + g1^8*g3^4*g6^4*t^7.3 + 2*g1^4*g2^4*g3^4*g6^4*t^7.3 + g2^8*g3^4*g6^4*t^7.3 + g1^4*g3^8*g6^4*t^7.3 + g2^4*g3^8*g6^4*t^7.3 + g1^8*g4^4*g6^4*t^7.3 + 2*g1^4*g2^4*g4^4*g6^4*t^7.3 + g2^8*g4^4*g6^4*t^7.3 + 2*g1^4*g3^4*g4^4*g6^4*t^7.3 + 2*g2^4*g3^4*g4^4*g6^4*t^7.3 + g3^8*g4^4*g6^4*t^7.3 + g1^4*g4^8*g6^4*t^7.3 + g2^4*g4^8*g6^4*t^7.3 + g3^4*g4^8*g6^4*t^7.3 + g1^8*g5^4*g6^4*t^7.3 + 2*g1^4*g2^4*g5^4*g6^4*t^7.3 + g2^8*g5^4*g6^4*t^7.3 + 2*g1^4*g3^4*g5^4*g6^4*t^7.3 + 2*g2^4*g3^4*g5^4*g6^4*t^7.3 + g3^8*g5^4*g6^4*t^7.3 + 2*g1^4*g4^4*g5^4*g6^4*t^7.3 + 2*g2^4*g4^4*g5^4*g6^4*t^7.3 + 2*g3^4*g4^4*g5^4*g6^4*t^7.3 + g4^8*g5^4*g6^4*t^7.3 + g1^4*g5^8*g6^4*t^7.3 + g2^4*g5^8*g6^4*t^7.3 + g3^4*g5^8*g6^4*t^7.3 + g4^4*g5^8*g6^4*t^7.3 + g1^8*g6^8*t^7.3 + g1^4*g2^4*g6^8*t^7.3 + g2^8*g6^8*t^7.3 + g1^4*g3^4*g6^8*t^7.3 + g2^4*g3^4*g6^8*t^7.3 + g3^8*g6^8*t^7.3 + g1^4*g4^4*g6^8*t^7.3 + g2^4*g4^4*g6^8*t^7.3 + g3^4*g4^4*g6^8*t^7.3 + g4^8*g6^8*t^7.3 + g1^4*g5^4*g6^8*t^7.3 + g2^4*g5^4*g6^8*t^7.3 + g3^4*g5^4*g6^8*t^7.3 + g4^4*g5^4*g6^8*t^7.3 + g5^8*g6^8*t^7.3 + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.43 - (g1^3*t^7.76)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.76)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.76)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.76)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.76)/(g1*g2*g3*g4*g6^5) - (g1^3*t^7.76)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.76)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.76)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.76)/(g1*g2*g3*g5^5*g6) - (g1^3*t^7.76)/(g2*g3*g4^5*g5*g6) - (g2^3*t^7.76)/(g1*g3*g4^5*g5*g6) - (g3^3*t^7.76)/(g1*g2*g4^5*g5*g6) - (g1^3*t^7.76)/(g2*g3^5*g4*g5*g6) - (g2^3*t^7.76)/(g1*g3^5*g4*g5*g6) - (g1^3*t^7.76)/(g2^5*g3*g4*g5*g6) - (5*t^7.76)/(g1*g2*g3*g4*g5*g6) - (g2^3*t^7.76)/(g1^5*g3*g4*g5*g6) - (g3^3*t^7.76)/(g1*g2^5*g4*g5*g6) - (g3^3*t^7.76)/(g1^5*g2*g4*g5*g6) - (g4^3*t^7.76)/(g1*g2*g3^5*g5*g6) - (g4^3*t^7.76)/(g1*g2^5*g3*g5*g6) - (g4^3*t^7.76)/(g1^5*g2*g3*g5*g6) - (g5^3*t^7.76)/(g1*g2*g3*g4^5*g6) - (g5^3*t^7.76)/(g1*g2*g3^5*g4*g6) - (g5^3*t^7.76)/(g1*g2^5*g3*g4*g6) - (g5^3*t^7.76)/(g1^5*g2*g3*g4*g6) - (g6^3*t^7.76)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.76)/(g1*g2*g3*g4^5*g5) - (g6^3*t^7.76)/(g1*g2*g3^5*g4*g5) - (g6^3*t^7.76)/(g1*g2^5*g3*g4*g5) - (g6^3*t^7.76)/(g1^5*g2*g3*g4*g5) + t^8.35/g1^8 + t^8.35/g2^8 + t^8.35/(g1^4*g2^4) + t^8.35/g3^8 + t^8.35/(g1^4*g3^4) + t^8.35/(g2^4*g3^4) + t^8.35/g4^8 + t^8.35/(g1^4*g4^4) + t^8.35/(g2^4*g4^4) + t^8.35/(g3^4*g4^4) + t^8.35/g5^8 + t^8.35/(g1^4*g5^4) + t^8.35/(g2^4*g5^4) + t^8.35/(g3^4*g5^4) + t^8.35/(g4^4*g5^4) + t^8.35/g6^8 + t^8.35/(g1^4*g6^4) + t^8.35/(g2^4*g6^4) + t^8.35/(g3^4*g6^4) + t^8.35/(g4^4*g6^4) + t^8.35/(g5^4*g6^4) - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.48)/g6^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.48)/g6^2 - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.48)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.48)/g6^2 - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.48)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.48)/g5^2 - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.48)/g5^2 - (g1^2*g2^2*g3^6*g4^2*g6^2*t^8.48)/g5^2 - (g1^2*g2^2*g3^2*g4^6*g6^2*t^8.48)/g5^2 - (g1^6*g2^2*g3^2*g5^2*g6^2*t^8.48)/g4^2 - (g1^2*g2^6*g3^2*g5^2*g6^2*t^8.48)/g4^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.48)/g4^2 - (g1^6*g2^2*g4^2*g5^2*g6^2*t^8.48)/g3^2 - (g1^2*g2^6*g4^2*g5^2*g6^2*t^8.48)/g3^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.48)/g2^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.48 - (g2^6*g3^2*g4^2*g5^2*g6^2*t^8.48)/g1^2 - (g1^2*g3^6*g4^2*g5^2*g6^2*t^8.48)/g2^2 - (g2^2*g3^6*g4^2*g5^2*g6^2*t^8.48)/g1^2 - (g1^2*g2^2*g4^6*g5^2*g6^2*t^8.48)/g3^2 - (g1^2*g3^2*g4^6*g5^2*g6^2*t^8.48)/g2^2 - (g2^2*g3^2*g4^6*g5^2*g6^2*t^8.48)/g1^2 - (g1^2*g2^2*g3^2*g5^6*g6^2*t^8.48)/g4^2 - (g1^2*g2^2*g4^2*g5^6*g6^2*t^8.48)/g3^2 - (g1^2*g3^2*g4^2*g5^6*g6^2*t^8.48)/g2^2 - (g2^2*g3^2*g4^2*g5^6*g6^2*t^8.48)/g1^2 - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.48)/g5^2 - (g1^2*g2^2*g3^2*g5^2*g6^6*t^8.48)/g4^2 - (g1^2*g2^2*g4^2*g5^2*g6^6*t^8.48)/g3^2 - (g1^2*g3^2*g4^2*g5^2*g6^6*t^8.48)/g2^2 - (g2^2*g3^2*g4^2*g5^2*g6^6*t^8.48)/g1^2 + g1^8*g2^8*g3^4*g4^4*g5^4*g6^4*t^8.6 + g1^8*g2^4*g3^8*g4^4*g5^4*g6^4*t^8.6 + g1^4*g2^8*g3^8*g4^4*g5^4*g6^4*t^8.6 + g1^8*g2^4*g3^4*g4^8*g5^4*g6^4*t^8.6 + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.6 + g1^4*g2^4*g3^8*g4^8*g5^4*g6^4*t^8.6 + g1^8*g2^4*g3^4*g4^4*g5^8*g6^4*t^8.6 + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.6 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.6 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.6 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.6 + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.6 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.6 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.6 + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.6 - t^4.76/(g1*g2*g3*g4*g5*g6*y) - (t^4.76*y)/(g1*g2*g3*g4*g5*g6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55458 $M_1\phi_1^2$ + $ M_1^2$ 0.8477 1.0039 0.8444 [X:[], M:[1.0], q:[0.6667, 0.6667, 0.6667], qb:[0.6667, 0.6667, 0.6667], phi:[0.5]] t^3. + 15*t^4. + 21*t^5.5 - 35*t^6. - t^4.5/y - t^4.5*y detail {a: 217/256, c: 257/256, M1: 1, q1: 2/3, q2: 2/3, q3: 2/3, qb1: 2/3, qb2: 2/3, qb3: 2/3, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55428 SU2adj1nf3 . 0.8588 1.0348 0.8299 [X:[], M:[], q:[0.6245, 0.6245, 0.6245], qb:[0.6245, 0.6245, 0.6245], phi:[0.5632]] t^3.38 + 15*t^3.75 + 21*t^5.44 - 36*t^6. - t^4.69/y - t^4.69*y detail