Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48167 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ 0.7001 0.8886 0.7878 [X:[], M:[1.1679, 1.0164, 0.8321, 0.7865, 0.7628, 0.6715], q:[0.3932, 0.4389], qb:[0.5903, 0.7746], phi:[0.4507]] [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_4$, $ M_3$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ M_1$, $ \phi_1q_1q_2$, $ M_6^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_6$, $ M_5^2$, $ M_4M_5$, $ M_4^2$, $ M_6\phi_1^2$, $ M_3M_5$, $ M_3M_4$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_6$, $ M_4\phi_1^2$, $ M_6q_2\tilde{q}_1$, $ M_3\phi_1^2$, $ M_2M_5$, $ M_5q_2\tilde{q}_1$, $ M_2M_4$, $ \phi_1^4$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_6$, $ M_3q_2\tilde{q}_1$, $ M_2\phi_1^2$, $ M_1M_5$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1M_4$, $ M_6\phi_1q_1q_2$ . t^2.01 + t^2.29 + t^2.36 + t^2.5 + t^2.7 + t^3.05 + t^3.09 + t^3.5 + t^3.85 + t^4.03 + t^4.09 + 2*t^4.3 + t^4.37 + t^4.44 + t^4.51 + t^4.58 + t^4.65 + 2*t^4.72 + t^4.78 + t^4.86 + t^4.89 + 2*t^4.99 + 2*t^5.06 + t^5.1 + t^5.2 + t^5.34 + t^5.38 + t^5.41 + t^5.45 + t^5.52 + t^5.58 + t^5.75 + 2*t^5.79 + t^5.86 - 2*t^6. + t^6.04 + t^6.1 + t^6.11 + t^6.14 + t^6.18 + t^6.21 + 2*t^6.32 + t^6.38 + t^6.39 + t^6.45 + t^6.53 + t^6.55 + 2*t^6.59 + 2*t^6.66 + 3*t^6.73 - t^6.76 + 2*t^6.8 + 2*t^6.87 + t^6.91 + 2*t^6.94 + 3*t^7.01 + t^7.07 + 3*t^7.08 + t^7.12 + t^7.14 + 2*t^7.18 + t^7.22 + t^7.25 + t^7.28 + 2*t^7.35 + 2*t^7.39 + 2*t^7.42 + t^7.46 + t^7.49 + 2*t^7.53 + t^7.56 + 2*t^7.6 + t^7.63 + t^7.66 + 2*t^7.7 + 2*t^7.77 + 2*t^7.81 + t^7.87 + t^7.88 + t^7.94 + t^7.98 - 2*t^8.01 + t^8.04 + t^8.06 + 2*t^8.08 + 2*t^8.11 + t^8.12 + t^8.15 + t^8.19 + t^8.22 - 2*t^8.29 + 2*t^8.33 - 3*t^8.36 + t^8.39 + 3*t^8.4 + t^8.43 + 3*t^8.46 + t^8.47 - t^8.5 + t^8.53 + t^8.54 + t^8.57 + 2*t^8.61 - t^8.63 + 2*t^8.67 + 2*t^8.68 - 3*t^8.7 + t^8.74 + 2*t^8.75 - t^8.78 + t^8.8 + 2*t^8.81 + t^8.84 + 4*t^8.88 + t^8.92 + t^8.95 + t^8.99 - t^4.35/y - t^6.37/y - t^6.64/y - t^6.71/y - t^7.06/y + (2*t^7.3)/y + t^7.37/y - t^7.4/y + t^7.51/y + (2*t^7.65)/y + t^7.72/y + t^7.78/y + t^7.86/y + (2*t^7.99)/y + (3*t^8.06)/y + t^8.1/y + t^8.2/y + (2*t^8.34)/y + t^8.41/y + t^8.45/y + t^8.52/y + t^8.55/y + t^8.58/y - t^8.66/y - t^8.73/y + t^8.75/y + (2*t^8.79)/y + (2*t^8.86)/y - t^8.93/y - t^4.35*y - t^6.37*y - t^6.64*y - t^6.71*y - t^7.06*y + 2*t^7.3*y + t^7.37*y - t^7.4*y + t^7.51*y + 2*t^7.65*y + t^7.72*y + t^7.78*y + t^7.86*y + 2*t^7.99*y + 3*t^8.06*y + t^8.1*y + t^8.2*y + 2*t^8.34*y + t^8.41*y + t^8.45*y + t^8.52*y + t^8.55*y + t^8.58*y - t^8.66*y - t^8.73*y + t^8.75*y + 2*t^8.79*y + 2*t^8.86*y - t^8.93*y (g1^4*t^2.01)/g2^28 + (g2^18*t^2.29)/g1^2 + (g1^2*t^2.36)/g2^16 + (g2^7*t^2.5)/g1 + t^2.7/g2^4 + (g2^8*t^3.05)/g1^2 + (g2^15*t^3.09)/g1 + (g1*t^3.5)/g2^7 + (g2^5*t^3.85)/g1 + (g1^8*t^4.03)/g2^56 + g1*g2*t^4.09 + (2*g1^2*t^4.3)/g2^10 + (g1^6*t^4.37)/g2^44 + (g2^13*t^4.44)/g1 + (g1^3*t^4.51)/g2^21 + (g2^36*t^4.58)/g1^4 + g2^2*t^4.65 + (2*g1^4*t^4.72)/g2^32 + (g2^25*t^4.78)/g1^3 + (g1*t^4.86)/g2^9 + (g1^2*t^4.89)/g2^2 + (2*g2^14*t^4.99)/g1^2 + (2*g1^2*t^5.06)/g2^20 + (g1^3*t^5.1)/g2^13 + (g2^3*t^5.2)/g1 + (g2^26*t^5.34)/g1^4 + (g2^33*t^5.38)/g1^3 + t^5.41/g2^8 + (g1*t^5.45)/g2 + (g1^5*t^5.52)/g2^35 + (g2^22*t^5.58)/g1^2 + (g2^4*t^5.75)/g1^2 + (2*g2^11*t^5.79)/g1 + (g1^3*t^5.86)/g2^23 - 2*t^6. + (g1^12*t^6.04)/g2^84 + (g2^16*t^6.1)/g1^4 + (g1^5*t^6.11)/g2^27 + (g2^23*t^6.14)/g1^3 + (g2^30*t^6.18)/g1^2 + (g1*t^6.21)/g2^11 + (2*g1^6*t^6.32)/g2^38 + (g2^19*t^6.38)/g1 + (g1^10*t^6.39)/g2^72 + (g1^3*t^6.45)/g2^15 + (g1^7*t^6.53)/g2^49 + (g2*t^6.55)/g1 + 2*g2^8*t^6.59 + (2*g1^4*t^6.66)/g2^26 + (2*g1^8*t^6.73)/g2^60 + (g2^31*t^6.73)/g1^3 - t^6.76/g2^10 + (2*g1*t^6.8)/g2^3 + (g1^5*t^6.87)/g2^37 + (g2^54*t^6.87)/g1^6 + (g1^6*t^6.91)/g2^30 + (2*g2^20*t^6.94)/g1^2 + (3*g1^2*t^7.01)/g2^14 + (g2^43*t^7.07)/g1^5 + (3*g1^6*t^7.08)/g2^48 + (g1^7*t^7.12)/g2^41 + (g2^9*t^7.14)/g1 + 2*g2^16*t^7.18 + (g1^3*t^7.22)/g2^25 + (g1^4*t^7.25)/g2^18 + (g2^32*t^7.28)/g1^4 + (2*t^7.35)/g2^2 + 2*g1*g2^5*t^7.39 + (2*g1^4*t^7.42)/g2^36 + (g1^5*t^7.46)/g2^29 + (g2^21*t^7.49)/g1^3 + (g1^9*t^7.53)/g2^63 + (g2^28*t^7.53)/g1^2 + (g1*t^7.56)/g2^13 + (2*g1^2*t^7.6)/g2^6 + (g2^44*t^7.63)/g1^6 + (g2^51*t^7.66)/g1^5 + (2*g2^10*t^7.7)/g1^2 + (2*g1^2*t^7.77)/g2^24 + (2*g1^3*t^7.81)/g2^17 + (g2^40*t^7.87)/g1^4 + (g1^7*t^7.88)/g2^51 + g2^6*t^7.94 + g1*g2^13*t^7.98 - (2*g1^4*t^8.01)/g2^28 + (g2^22*t^8.04)/g1^4 + (g1^16*t^8.06)/g2^112 + (2*g2^29*t^8.08)/g1^3 + (2*t^8.11)/g2^12 + (g1^9*t^8.12)/g2^55 + (g1*t^8.15)/g2^5 + g1^2*g2^2*t^8.19 + (g1^5*t^8.22)/g2^39 - (2*g2^18*t^8.29)/g1^2 + (2*g1^10*t^8.33)/g2^66 - (3*g1^2*t^8.36)/g2^16 + (g2^34*t^8.39)/g1^6 + (g1^14*t^8.4)/g2^100 + (2*g1^3*t^8.4)/g2^9 + (g2^41*t^8.43)/g1^5 + (2*t^8.46)/g1^2 + (g2^48*t^8.46)/g1^4 + (g1^7*t^8.47)/g2^43 - (g2^7*t^8.5)/g1 + g2^14*t^8.53 + (g1^11*t^8.54)/g2^77 + (g1^3*t^8.57)/g2^27 + (2*g1^4*t^8.61)/g2^20 - (g2^30*t^8.63)/g1^4 + (2*g2^37*t^8.67)/g1^3 + (2*g1^8*t^8.68)/g2^54 - (3*t^8.7)/g2^4 + g1*g2^3*t^8.74 + (2*g1^12*t^8.75)/g2^88 - (g1^4*t^8.78)/g2^38 + (g2^12*t^8.8)/g1^4 + (2*g1^5*t^8.81)/g2^31 + (g2^19*t^8.84)/g1^3 + (g1^9*t^8.88)/g2^65 + (3*g2^26*t^8.88)/g1^2 + (g1^10*t^8.92)/g2^58 + (g1^2*t^8.95)/g2^8 + (g1^3*t^8.99)/g2 - t^4.35/(g2^2*y) - (g1^4*t^6.37)/(g2^30*y) - (g2^16*t^6.64)/(g1^2*y) - (g1^2*t^6.71)/(g2^18*y) - t^7.06/(g2^6*y) + (2*g1^2*t^7.3)/(g2^10*y) + (g1^6*t^7.37)/(g2^44*y) - (g2^6*t^7.4)/(g1^2*y) + (g1^3*t^7.51)/(g2^21*y) + (2*g2^2*t^7.65)/y + (g1^4*t^7.72)/(g2^32*y) + (g2^25*t^7.78)/(g1^3*y) + (g1*t^7.86)/(g2^9*y) + (2*g2^14*t^7.99)/(g1^2*y) + (3*g1^2*t^8.06)/(g2^20*y) + (g1^3*t^8.1)/(g2^13*y) + (g2^3*t^8.2)/(g1*y) + (2*g2^26*t^8.34)/(g1^4*y) - (g1^8*t^8.38)/(g2^58*y) + (g2^33*t^8.38)/(g1^3*y) + t^8.41/(g2^8*y) + (g1*t^8.45)/(g2*y) + (g1^5*t^8.52)/(g2^35*y) + (g2^15*t^8.55)/(g1^3*y) + (g2^22*t^8.58)/(g1^2*y) - (g1^2*t^8.66)/(g2^12*y) - (g1^6*t^8.73)/(g2^46*y) + (g2^4*t^8.75)/(g1^2*y) + (2*g2^11*t^8.79)/(g1*y) + (2*g1^3*t^8.86)/(g2^23*y) - (g2^34*t^8.93)/(g1^4*y) - (t^4.35*y)/g2^2 - (g1^4*t^6.37*y)/g2^30 - (g2^16*t^6.64*y)/g1^2 - (g1^2*t^6.71*y)/g2^18 - (t^7.06*y)/g2^6 + (2*g1^2*t^7.3*y)/g2^10 + (g1^6*t^7.37*y)/g2^44 - (g2^6*t^7.4*y)/g1^2 + (g1^3*t^7.51*y)/g2^21 + 2*g2^2*t^7.65*y + (g1^4*t^7.72*y)/g2^32 + (g2^25*t^7.78*y)/g1^3 + (g1*t^7.86*y)/g2^9 + (2*g2^14*t^7.99*y)/g1^2 + (3*g1^2*t^8.06*y)/g2^20 + (g1^3*t^8.1*y)/g2^13 + (g2^3*t^8.2*y)/g1 + (2*g2^26*t^8.34*y)/g1^4 - (g1^8*t^8.38*y)/g2^58 + (g2^33*t^8.38*y)/g1^3 + (t^8.41*y)/g2^8 + (g1*t^8.45*y)/g2 + (g1^5*t^8.52*y)/g2^35 + (g2^15*t^8.55*y)/g1^3 + (g2^22*t^8.58*y)/g1^2 - (g1^2*t^8.66*y)/g2^12 - (g1^6*t^8.73*y)/g2^46 + (g2^4*t^8.75*y)/g1^2 + (2*g2^11*t^8.79*y)/g1 + (2*g1^3*t^8.86*y)/g2^23 - (g2^34*t^8.93*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55917 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_6$ 0.6888 0.8731 0.7889 [X:[], M:[1.2, 0.9495, 0.8, 0.8498, 0.7003, 0.8], q:[0.4249, 0.3751], qb:[0.6255, 0.7751], phi:[0.4498]] t^2.1 + 2*t^2.4 + t^2.55 + t^2.7 + t^2.85 + t^3. + t^3.6 + t^3.75 + 2*t^4.2 + t^4.35 + 3*t^4.5 + t^4.65 + 4*t^4.8 + 3*t^4.95 + 5*t^5.1 + 2*t^5.25 + 3*t^5.4 + 2*t^5.55 + 3*t^5.7 + t^5.85 - t^4.35/y - t^4.35*y detail
55918 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ 0.7146 0.9134 0.7823 [X:[], M:[1.1709, 1.0101, 0.8291, 0.7925, 0.7568, 0.6837, 0.8291], q:[0.3963, 0.4328], qb:[0.5936, 0.7747], phi:[0.4507]] t^2.05 + t^2.27 + t^2.38 + 2*t^2.49 + t^2.7 + t^3.03 + t^3.08 + t^3.84 + 2*t^4.1 + 2*t^4.32 + 2*t^4.43 + 3*t^4.54 + t^4.65 + 4*t^4.76 + 2*t^4.86 + t^4.91 + 4*t^4.97 + 2*t^5.08 + t^5.13 + 2*t^5.19 + t^5.3 + t^5.35 + t^5.41 + t^5.46 + t^5.52 + 2*t^5.57 + t^5.73 + t^5.78 - 3*t^6. - t^4.35/y - t^4.35*y detail
55919 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_4M_6$ + $ M_5X_1$ 0.5999 0.7526 0.7972 [X:[1.4424], M:[1.2558, 0.8849, 0.7442, 0.977, 0.5576, 1.023], q:[0.4885, 0.2558], qb:[0.6266, 0.7673], phi:[0.4655]] t^2.23 + 2*t^2.65 + t^2.79 + t^2.93 + t^3.07 + t^3.63 + t^3.77 + t^4.04 + t^4.18 + t^4.33 + t^4.47 + t^4.74 + t^4.88 + t^5.03 + 2*t^5.16 + t^5.29 + t^5.3 + t^5.31 + t^5.44 + t^5.45 + t^5.58 + t^5.59 + 3*t^5.72 + 2*t^5.86 - t^6. - t^4.4/y - t^4.4*y detail
55913 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_4M_7$ 0.6832 0.859 0.7953 [X:[], M:[1.1731, 1.0135, 0.8269, 0.7994, 0.7473, 0.6924, 1.2006], q:[0.3997, 0.4272], qb:[0.5868, 0.7734], phi:[0.4532]] t^2.08 + t^2.24 + t^2.48 + t^2.72 + 2*t^3.04 + t^3.52 + t^3.6 + t^3.84 + t^4.08 + t^4.15 + 2*t^4.32 + t^4.4 + t^4.48 + t^4.56 + t^4.72 + t^4.8 + t^4.88 + 2*t^4.96 + 2*t^5.12 + t^5.2 + 2*t^5.28 + t^5.52 + t^5.6 + t^5.68 + 3*t^5.76 + t^5.84 - 2*t^6. - t^4.36/y - t^4.36*y detail
55914 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_6q_2\tilde{q}_1$ 0.6631 0.8382 0.7912 [X:[], M:[1.2027, 0.8007, 0.7973, 0.8073, 0.7907, 0.8107], q:[0.4037, 0.3937], qb:[0.7957, 0.799], phi:[0.402]] t^2.37 + t^2.39 + t^2.4 + t^2.41 + t^2.42 + t^2.43 + t^3.57 + t^3.6 + t^3.61 + t^4.74 + t^4.76 + 2*t^4.77 + 3*t^4.78 + t^4.79 + 4*t^4.8 + 2*t^4.81 + 2*t^4.82 + 2*t^4.83 + 2*t^4.84 + t^4.85 + t^4.86 + t^5.94 + t^5.96 + t^5.97 + 3*t^5.98 + t^5.99 - t^6. - t^4.21/y - t^4.21*y detail
55916 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_6^2$ + $ M_5X_1$ 0.6106 0.7639 0.7994 [X:[1.4041], M:[1.25, 0.8562, 0.75, 0.9521, 0.5959, 1.0], q:[0.476, 0.274], qb:[0.6678, 0.774], phi:[0.4521]] t^2.25 + t^2.57 + t^2.71 + t^2.83 + t^2.86 + t^3. + t^3.61 + t^3.75 + t^4.18 + t^4.21 + t^4.33 + t^4.5 + t^4.79 + t^4.96 + t^5.08 + t^5.11 + t^5.14 + t^5.25 + t^5.28 + t^5.36 + t^5.42 + t^5.54 + 2*t^5.57 + t^5.65 + t^5.68 + 2*t^5.71 + t^5.83 + t^5.86 - t^6. - t^4.36/y - t^4.36*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46743 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ 0.6793 0.8474 0.8016 [X:[], M:[1.1687, 1.0148, 0.8313, 0.788, 0.7613], q:[0.394, 0.4373], qb:[0.5912, 0.7746], phi:[0.4507]] t^2.28 + t^2.36 + t^2.49 + t^2.7 + t^3.04 + t^3.09 + t^3.51 + t^3.85 + t^3.98 + t^4.1 + t^4.31 + t^4.44 + t^4.57 + t^4.65 + t^4.73 + t^4.78 + t^4.86 + t^4.9 + 2*t^4.99 + t^5.07 + t^5.2 + t^5.33 + t^5.37 + t^5.41 + t^5.45 + t^5.58 + t^5.75 + 2*t^5.79 - 2*t^6. - t^4.35/y - t^4.35*y detail