Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48167 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7001 0.8886 0.7878 [M:[1.1679, 1.0164, 0.8321, 0.7865, 0.7628, 0.6715], q:[0.3932, 0.4389], qb:[0.5903, 0.7746], phi:[0.4507]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{6}\phi_{1}q_{1}q_{2}$ ${}$ -2 t^2.015 + t^2.288 + t^2.359 + t^2.496 + t^2.704 + t^3.049 + t^3.088 + t^3.504 + t^3.849 + t^4.029 + t^4.095 + 2*t^4.303 + t^4.374 + t^4.44 + t^4.511 + t^4.577 + t^4.648 + 2*t^4.719 + t^4.785 + t^4.856 + t^4.894 + 2*t^4.993 + 2*t^5.064 + t^5.102 + t^5.201 + t^5.338 + t^5.376 + t^5.409 + t^5.447 + t^5.518 + t^5.584 + t^5.754 + 2*t^5.792 + t^5.863 - 2*t^6. + t^6.044 + t^6.099 + t^6.109 + t^6.137 + t^6.175 + t^6.208 + 2*t^6.317 + t^6.383 + t^6.389 + t^6.454 + t^6.525 + t^6.553 + 2*t^6.591 + 2*t^6.662 + t^6.728 + 2*t^6.733 - t^6.761 + 2*t^6.799 + t^6.865 + t^6.87 + t^6.909 + 2*t^6.936 + 3*t^7.007 + t^7.073 + 3*t^7.078 + t^7.117 + t^7.144 + 2*t^7.183 + t^7.215 + t^7.254 + t^7.281 + 2*t^7.352 + 2*t^7.391 + 2*t^7.423 + t^7.462 + t^7.489 + t^7.527 + t^7.533 + t^7.56 + 2*t^7.599 + t^7.626 + t^7.664 + 2*t^7.697 + 2*t^7.768 + 2*t^7.807 + t^7.872 + t^7.878 + t^7.943 + t^7.982 - 2*t^8.015 + t^8.042 + t^8.058 + 2*t^8.08 + 2*t^8.113 + t^8.124 + t^8.151 + t^8.19 + t^8.223 - 2*t^8.288 + 2*t^8.332 - 3*t^8.359 + t^8.387 + 2*t^8.398 + t^8.403 + t^8.425 + 2*t^8.458 + t^8.464 + t^8.469 - t^8.496 + t^8.535 + t^8.54 + t^8.567 + 2*t^8.606 - t^8.633 + 2*t^8.672 + 2*t^8.677 - 3*t^8.704 + t^8.743 + 2*t^8.748 - t^8.775 + t^8.803 + 2*t^8.814 + t^8.841 + 3*t^8.88 + t^8.885 + t^8.923 + t^8.951 + t^8.989 - t^4.352/y - t^6.367/y - t^6.641/y - t^6.712/y - t^7.057/y + (2*t^7.303)/y + t^7.374/y - t^7.401/y + t^7.511/y + (2*t^7.648)/y + t^7.719/y + t^7.785/y + t^7.856/y + (2*t^7.993)/y + (3*t^8.064)/y + t^8.102/y + t^8.201/y + (2*t^8.338)/y + t^8.376/y - t^8.381/y + t^8.409/y + t^8.447/y + t^8.518/y + t^8.546/y + t^8.584/y - t^8.655/y - t^8.726/y + t^8.754/y + (2*t^8.792)/y + (2*t^8.863)/y - t^8.929/y - t^4.352*y - t^6.367*y - t^6.641*y - t^6.712*y - t^7.057*y + 2*t^7.303*y + t^7.374*y - t^7.401*y + t^7.511*y + 2*t^7.648*y + t^7.719*y + t^7.785*y + t^7.856*y + 2*t^7.993*y + 3*t^8.064*y + t^8.102*y + t^8.201*y + 2*t^8.338*y + t^8.376*y - t^8.381*y + t^8.409*y + t^8.447*y + t^8.518*y + t^8.546*y + t^8.584*y - t^8.655*y - t^8.726*y + t^8.754*y + 2*t^8.792*y + 2*t^8.863*y - t^8.929*y (g1^4*t^2.015)/g2^28 + (g2^18*t^2.288)/g1^2 + (g1^2*t^2.359)/g2^16 + (g2^7*t^2.496)/g1 + t^2.704/g2^4 + (g2^8*t^3.049)/g1^2 + (g2^15*t^3.088)/g1 + (g1*t^3.504)/g2^7 + (g2^5*t^3.849)/g1 + (g1^8*t^4.029)/g2^56 + g1*g2*t^4.095 + (2*g1^2*t^4.303)/g2^10 + (g1^6*t^4.374)/g2^44 + (g2^13*t^4.44)/g1 + (g1^3*t^4.511)/g2^21 + (g2^36*t^4.577)/g1^4 + g2^2*t^4.648 + (2*g1^4*t^4.719)/g2^32 + (g2^25*t^4.785)/g1^3 + (g1*t^4.856)/g2^9 + (g1^2*t^4.894)/g2^2 + (2*g2^14*t^4.993)/g1^2 + (2*g1^2*t^5.064)/g2^20 + (g1^3*t^5.102)/g2^13 + (g2^3*t^5.201)/g1 + (g2^26*t^5.338)/g1^4 + (g2^33*t^5.376)/g1^3 + t^5.409/g2^8 + (g1*t^5.447)/g2 + (g1^5*t^5.518)/g2^35 + (g2^22*t^5.584)/g1^2 + (g2^4*t^5.754)/g1^2 + (2*g2^11*t^5.792)/g1 + (g1^3*t^5.863)/g2^23 - 2*t^6. + (g1^12*t^6.044)/g2^84 + (g2^16*t^6.099)/g1^4 + (g1^5*t^6.109)/g2^27 + (g2^23*t^6.137)/g1^3 + (g2^30*t^6.175)/g1^2 + (g1*t^6.208)/g2^11 + (2*g1^6*t^6.317)/g2^38 + (g2^19*t^6.383)/g1 + (g1^10*t^6.389)/g2^72 + (g1^3*t^6.454)/g2^15 + (g1^7*t^6.525)/g2^49 + (g2*t^6.553)/g1 + 2*g2^8*t^6.591 + (2*g1^4*t^6.662)/g2^26 + (g2^31*t^6.728)/g1^3 + (2*g1^8*t^6.733)/g2^60 - t^6.761/g2^10 + (2*g1*t^6.799)/g2^3 + (g2^54*t^6.865)/g1^6 + (g1^5*t^6.87)/g2^37 + (g1^6*t^6.909)/g2^30 + (2*g2^20*t^6.936)/g1^2 + (3*g1^2*t^7.007)/g2^14 + (g2^43*t^7.073)/g1^5 + (3*g1^6*t^7.078)/g2^48 + (g1^7*t^7.117)/g2^41 + (g2^9*t^7.144)/g1 + 2*g2^16*t^7.183 + (g1^3*t^7.215)/g2^25 + (g1^4*t^7.254)/g2^18 + (g2^32*t^7.281)/g1^4 + (2*t^7.352)/g2^2 + 2*g1*g2^5*t^7.391 + (2*g1^4*t^7.423)/g2^36 + (g1^5*t^7.462)/g2^29 + (g2^21*t^7.489)/g1^3 + (g2^28*t^7.527)/g1^2 + (g1^9*t^7.533)/g2^63 + (g1*t^7.56)/g2^13 + (2*g1^2*t^7.599)/g2^6 + (g2^44*t^7.626)/g1^6 + (g2^51*t^7.664)/g1^5 + (2*g2^10*t^7.697)/g1^2 + (2*g1^2*t^7.768)/g2^24 + (2*g1^3*t^7.807)/g2^17 + (g2^40*t^7.872)/g1^4 + (g1^7*t^7.878)/g2^51 + g2^6*t^7.943 + g1*g2^13*t^7.982 - (2*g1^4*t^8.015)/g2^28 + (g2^22*t^8.042)/g1^4 + (g1^16*t^8.058)/g2^112 + (2*g2^29*t^8.08)/g1^3 + (2*t^8.113)/g2^12 + (g1^9*t^8.124)/g2^55 + (g1*t^8.151)/g2^5 + g1^2*g2^2*t^8.19 + (g1^5*t^8.223)/g2^39 - (2*g2^18*t^8.288)/g1^2 + (2*g1^10*t^8.332)/g2^66 - (3*g1^2*t^8.359)/g2^16 + (g2^34*t^8.387)/g1^6 + (2*g1^3*t^8.398)/g2^9 + (g1^14*t^8.403)/g2^100 + (g2^41*t^8.425)/g1^5 + (2*t^8.458)/g1^2 + (g2^48*t^8.464)/g1^4 + (g1^7*t^8.469)/g2^43 - (g2^7*t^8.496)/g1 + g2^14*t^8.535 + (g1^11*t^8.54)/g2^77 + (g1^3*t^8.567)/g2^27 + (2*g1^4*t^8.606)/g2^20 - (g2^30*t^8.633)/g1^4 + (2*g2^37*t^8.672)/g1^3 + (2*g1^8*t^8.677)/g2^54 - (3*t^8.704)/g2^4 + g1*g2^3*t^8.743 + (2*g1^12*t^8.748)/g2^88 - (g1^4*t^8.775)/g2^38 + (g2^12*t^8.803)/g1^4 + (2*g1^5*t^8.814)/g2^31 + (g2^19*t^8.841)/g1^3 + (3*g2^26*t^8.88)/g1^2 + (g1^9*t^8.885)/g2^65 + (g1^10*t^8.923)/g2^58 + (g1^2*t^8.951)/g2^8 + (g1^3*t^8.989)/g2 - t^4.352/(g2^2*y) - (g1^4*t^6.367)/(g2^30*y) - (g2^16*t^6.641)/(g1^2*y) - (g1^2*t^6.712)/(g2^18*y) - t^7.057/(g2^6*y) + (2*g1^2*t^7.303)/(g2^10*y) + (g1^6*t^7.374)/(g2^44*y) - (g2^6*t^7.401)/(g1^2*y) + (g1^3*t^7.511)/(g2^21*y) + (2*g2^2*t^7.648)/y + (g1^4*t^7.719)/(g2^32*y) + (g2^25*t^7.785)/(g1^3*y) + (g1*t^7.856)/(g2^9*y) + (2*g2^14*t^7.993)/(g1^2*y) + (3*g1^2*t^8.064)/(g2^20*y) + (g1^3*t^8.102)/(g2^13*y) + (g2^3*t^8.201)/(g1*y) + (2*g2^26*t^8.338)/(g1^4*y) + (g2^33*t^8.376)/(g1^3*y) - (g1^8*t^8.381)/(g2^58*y) + t^8.409/(g2^8*y) + (g1*t^8.447)/(g2*y) + (g1^5*t^8.518)/(g2^35*y) + (g2^15*t^8.546)/(g1^3*y) + (g2^22*t^8.584)/(g1^2*y) - (g1^2*t^8.655)/(g2^12*y) - (g1^6*t^8.726)/(g2^46*y) + (g2^4*t^8.754)/(g1^2*y) + (2*g2^11*t^8.792)/(g1*y) + (2*g1^3*t^8.863)/(g2^23*y) - (g2^34*t^8.929)/(g1^4*y) - (t^4.352*y)/g2^2 - (g1^4*t^6.367*y)/g2^30 - (g2^16*t^6.641*y)/g1^2 - (g1^2*t^6.712*y)/g2^18 - (t^7.057*y)/g2^6 + (2*g1^2*t^7.303*y)/g2^10 + (g1^6*t^7.374*y)/g2^44 - (g2^6*t^7.401*y)/g1^2 + (g1^3*t^7.511*y)/g2^21 + 2*g2^2*t^7.648*y + (g1^4*t^7.719*y)/g2^32 + (g2^25*t^7.785*y)/g1^3 + (g1*t^7.856*y)/g2^9 + (2*g2^14*t^7.993*y)/g1^2 + (3*g1^2*t^8.064*y)/g2^20 + (g1^3*t^8.102*y)/g2^13 + (g2^3*t^8.201*y)/g1 + (2*g2^26*t^8.338*y)/g1^4 + (g2^33*t^8.376*y)/g1^3 - (g1^8*t^8.381*y)/g2^58 + (t^8.409*y)/g2^8 + (g1*t^8.447*y)/g2 + (g1^5*t^8.518*y)/g2^35 + (g2^15*t^8.546*y)/g1^3 + (g2^22*t^8.584*y)/g1^2 - (g1^2*t^8.655*y)/g2^12 - (g1^6*t^8.726*y)/g2^46 + (g2^4*t^8.754*y)/g1^2 + (2*g2^11*t^8.792*y)/g1 + (2*g1^3*t^8.863*y)/g2^23 - (g2^34*t^8.929*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55917 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{6}$ 0.6888 0.8731 0.7889 [M:[1.2, 0.9495, 0.8, 0.8498, 0.7003, 0.8], q:[0.4249, 0.3751], qb:[0.6255, 0.7751], phi:[0.4498]] t^2.101 + 2*t^2.4 + t^2.55 + t^2.699 + t^2.849 + t^3.002 + t^3.6 + t^3.75 + 2*t^4.202 + t^4.351 + 3*t^4.501 + t^4.65 + 4*t^4.8 + 3*t^4.95 + 3*t^5.099 + 2*t^5.103 + 2*t^5.249 + t^5.398 + 2*t^5.402 + t^5.548 + t^5.551 + t^5.697 + 2*t^5.701 + t^5.85 - t^6. - t^4.35/y - t^4.35*y detail
55918 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ 0.7146 0.9134 0.7823 [M:[1.1709, 1.0101, 0.8291, 0.7925, 0.7568, 0.6837, 0.8291], q:[0.3963, 0.4328], qb:[0.5936, 0.7747], phi:[0.4507]] t^2.051 + t^2.271 + t^2.378 + 2*t^2.487 + t^2.704 + t^3.03 + t^3.079 + t^3.839 + t^4.102 + t^4.105 + 2*t^4.322 + t^4.429 + t^4.431 + 2*t^4.538 + t^4.541 + t^4.648 + 2*t^4.755 + 2*t^4.758 + 2*t^4.865 + t^4.914 + 4*t^4.974 + 2*t^5.081 + t^5.131 + 2*t^5.191 + t^5.301 + t^5.35 + t^5.408 + t^5.457 + t^5.518 + 2*t^5.567 + t^5.734 + t^5.783 - 3*t^6. - t^4.352/y - t^4.352*y detail
55919 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{5}X_{1}$ 0.5999 0.7526 0.7972 [X:[1.4424], M:[1.2558, 0.8849, 0.7442, 0.977, 0.5576, 1.023], q:[0.4885, 0.2558], qb:[0.6266, 0.7673], phi:[0.4655]] t^2.233 + t^2.647 + t^2.655 + t^2.793 + t^2.931 + t^3.069 + t^3.629 + t^3.767 + t^4.044 + t^4.182 + t^4.327 + t^4.465 + t^4.742 + t^4.88 + t^5.025 + t^5.156 + t^5.164 + t^5.294 + t^5.302 + t^5.309 + t^5.44 + t^5.447 + t^5.578 + t^5.586 + t^5.716 + 2*t^5.724 + 2*t^5.862 - t^6. - t^4.396/y - t^4.396*y detail
55913 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{7}$ 0.6832 0.859 0.7953 [M:[1.1731, 1.0135, 0.8269, 0.7994, 0.7473, 0.6924, 1.2006], q:[0.3997, 0.4272], qb:[0.5868, 0.7734], phi:[0.4532]] t^2.077 + t^2.242 + t^2.481 + t^2.719 + t^3.04 + t^3.042 + t^3.519 + t^3.602 + t^3.84 + t^4.081 + t^4.155 + 2*t^4.319 + t^4.402 + t^4.484 + t^4.558 + t^4.723 + t^4.797 + t^4.881 + 2*t^4.961 + t^5.118 + t^5.119 + t^5.2 + t^5.282 + t^5.284 + t^5.523 + t^5.597 + t^5.679 + t^5.76 + 2*t^5.761 + t^5.844 - 2*t^6. - t^4.36/y - t^4.36*y detail
55914 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.6631 0.8382 0.7912 [M:[1.2027, 0.8007, 0.7973, 0.8073, 0.7907, 0.8107], q:[0.4037, 0.3937], qb:[0.7957, 0.799], phi:[0.402]] t^2.372 + t^2.392 + t^2.402 + t^2.412 + t^2.422 + t^2.432 + t^3.568 + t^3.598 + t^3.608 + t^4.744 + t^4.764 + 2*t^4.774 + 3*t^4.784 + t^4.794 + 4*t^4.804 + 2*t^4.814 + 2*t^4.824 + 2*t^4.834 + 2*t^4.844 + t^4.854 + t^4.864 + t^5.94 + t^5.96 + t^5.97 + 3*t^5.98 + t^5.99 - t^6. - t^4.206/y - t^4.206*y detail
55916 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}^{2}$ + ${ }M_{5}X_{1}$ 0.6106 0.7639 0.7994 [X:[1.4041], M:[1.25, 0.8562, 0.75, 0.9521, 0.5959, 1.0], q:[0.476, 0.274], qb:[0.6678, 0.774], phi:[0.4521]] t^2.25 + t^2.569 + t^2.712 + t^2.825 + t^2.856 + t^3. + t^3.606 + t^3.75 + t^4.181 + t^4.212 + t^4.325 + t^4.5 + t^4.788 + t^4.962 + t^5.075 + t^5.106 + t^5.137 + t^5.25 + t^5.281 + t^5.363 + t^5.425 + t^5.538 + 2*t^5.569 + t^5.651 + t^5.681 + 2*t^5.712 + t^5.825 + t^5.856 - t^6. - t^4.356/y - t^4.356*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46743 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ 0.6793 0.8474 0.8016 [M:[1.1687, 1.0148, 0.8313, 0.788, 0.7613], q:[0.394, 0.4373], qb:[0.5912, 0.7746], phi:[0.4507]] t^2.284 + t^2.364 + t^2.494 + t^2.704 + t^3.044 + t^3.086 + t^3.506 + t^3.846 + t^3.976 + t^4.097 + t^4.308 + t^4.438 + t^4.568 + t^4.648 + t^4.728 + t^4.778 + t^4.858 + t^4.899 + 2*t^4.988 + t^5.068 + t^5.198 + t^5.328 + t^5.369 + t^5.408 + t^5.45 + t^5.58 + t^5.749 + 2*t^5.79 - 2*t^6. - t^4.352/y - t^4.352*y detail