Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6502 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{10}M_{6}$ | 0.7001 | 0.8886 | 0.7878 | [M:[1.0164, 0.7865, 0.9708, 0.8321, 1.1679, 1.0985, 0.7628, 1.0292, 0.6715, 0.9015], q:[0.5903, 0.3932], qb:[0.4389, 0.7746], phi:[0.4507]] | [M:[[2, -14], [-2, -2], [-1, -15], [1, -1], [-1, 1], [0, 8], [2, 6], [1, 15], [-4, 4], [0, -8]], q:[[-1, 15], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, -4]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{7}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{10}$, ${ }M_{1}$, ${ }M_{8}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{9}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{9}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{2}^{2}$, ${ }M_{10}M_{9}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{10}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{10}M_{2}$, ${ }M_{1}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{10}M_{4}$, ${ }M_{1}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{10}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{9}$, ${ }M_{4}M_{8}$, ${ }M_{1}M_{10}$, ${ }M_{5}M_{7}$, ${ }M_{10}M_{8}$, ${ }M_{2}M_{5}$, ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ | ${}$ | -2 | t^2.015 + t^2.288 + t^2.359 + t^2.496 + t^2.704 + t^3.049 + t^3.088 + t^3.504 + t^3.849 + t^4.029 + t^4.095 + 2*t^4.303 + t^4.374 + t^4.44 + t^4.511 + t^4.577 + t^4.648 + 2*t^4.719 + t^4.785 + t^4.856 + t^4.894 + 2*t^4.993 + 2*t^5.064 + t^5.102 + t^5.201 + t^5.338 + t^5.376 + t^5.409 + t^5.447 + t^5.518 + t^5.584 + t^5.754 + 2*t^5.792 + t^5.863 - 2*t^6. + t^6.044 + t^6.099 + t^6.109 + t^6.137 + t^6.175 + t^6.208 + 2*t^6.317 + t^6.383 + t^6.389 + t^6.454 + t^6.525 + t^6.553 + 2*t^6.591 + 2*t^6.662 + t^6.728 + 2*t^6.733 - t^6.761 + 2*t^6.799 + t^6.865 + t^6.87 + t^6.909 + 2*t^6.936 + 3*t^7.007 + t^7.073 + 3*t^7.078 + t^7.117 + t^7.144 + 2*t^7.183 + t^7.215 + t^7.254 + t^7.281 + 2*t^7.352 + 2*t^7.391 + 2*t^7.423 + t^7.462 + t^7.489 + t^7.527 + t^7.533 + t^7.56 + 2*t^7.599 + t^7.626 + t^7.664 + 2*t^7.697 + 2*t^7.768 + 2*t^7.807 + t^7.872 + t^7.878 + t^7.943 + t^7.982 - 2*t^8.015 + t^8.042 + t^8.058 + 2*t^8.08 + 2*t^8.113 + t^8.124 + t^8.151 + t^8.19 + t^8.223 - 2*t^8.288 + 2*t^8.332 - 3*t^8.359 + t^8.387 + 2*t^8.398 + t^8.403 + t^8.425 + 2*t^8.458 + t^8.464 + t^8.469 - t^8.496 + t^8.535 + t^8.54 + t^8.567 + 2*t^8.606 - t^8.633 + 2*t^8.672 + 2*t^8.677 - 3*t^8.704 + t^8.743 + 2*t^8.748 - t^8.775 + t^8.803 + 2*t^8.814 + t^8.841 + 3*t^8.88 + t^8.885 + t^8.923 + t^8.951 + t^8.989 - t^4.352/y - t^6.367/y - t^6.641/y - t^6.712/y - t^7.057/y + (2*t^7.303)/y + t^7.374/y - t^7.401/y + t^7.511/y + (2*t^7.648)/y + t^7.719/y + t^7.785/y + t^7.856/y + (2*t^7.993)/y + (3*t^8.064)/y + t^8.102/y + t^8.201/y + (2*t^8.338)/y + t^8.376/y - t^8.381/y + t^8.409/y + t^8.447/y + t^8.518/y + t^8.546/y + t^8.584/y - t^8.655/y - t^8.726/y + t^8.754/y + (2*t^8.792)/y + (2*t^8.863)/y - t^8.929/y - t^4.352*y - t^6.367*y - t^6.641*y - t^6.712*y - t^7.057*y + 2*t^7.303*y + t^7.374*y - t^7.401*y + t^7.511*y + 2*t^7.648*y + t^7.719*y + t^7.785*y + t^7.856*y + 2*t^7.993*y + 3*t^8.064*y + t^8.102*y + t^8.201*y + 2*t^8.338*y + t^8.376*y - t^8.381*y + t^8.409*y + t^8.447*y + t^8.518*y + t^8.546*y + t^8.584*y - t^8.655*y - t^8.726*y + t^8.754*y + 2*t^8.792*y + 2*t^8.863*y - t^8.929*y | (g2^4*t^2.015)/g1^4 + g1^2*g2^6*t^2.288 + t^2.359/(g1^2*g2^2) + (g1*t^2.496)/g2 + t^2.704/g2^8 + (g1^2*t^3.049)/g2^14 + g1*g2^15*t^3.088 + (g2*t^3.504)/g1 + (g1*t^3.849)/g2^5 + (g2^8*t^4.029)/g1^8 + (g2^17*t^4.095)/g1 + (2*g2^10*t^4.303)/g1^2 + (g2^2*t^4.374)/g1^6 + g1*g2^11*t^4.44 + (g2^3*t^4.511)/g1^3 + g1^4*g2^12*t^4.577 + g2^4*t^4.648 + (2*t^4.719)/(g1^4*g2^4) + g1^3*g2^5*t^4.785 + t^4.856/(g1*g2^3) + (g2^26*t^4.894)/g1^2 + (2*g1^2*t^4.993)/g2^2 + (2*t^5.064)/(g1^2*g2^10) + (g2^19*t^5.102)/g1^3 + (g1*t^5.201)/g2^9 + (g1^4*t^5.338)/g2^8 + g1^3*g2^21*t^5.376 + t^5.409/g2^16 + (g2^13*t^5.447)/g1 + (g2^5*t^5.518)/g1^5 + g1^2*g2^14*t^5.584 + (g1^2*t^5.754)/g2^22 + 2*g1*g2^7*t^5.792 + t^5.863/(g1^3*g2) - 2*t^6. + (g2^12*t^6.044)/g1^12 + (g1^4*t^6.099)/g2^28 + (g2^21*t^6.109)/g1^5 + g1^3*g2*t^6.137 + g1^2*g2^30*t^6.175 + t^6.208/(g1*g2^7) + (2*g2^14*t^6.317)/g1^6 + g1*g2^23*t^6.383 + (g2^6*t^6.389)/g1^10 + (g2^15*t^6.454)/g1^3 + (g2^7*t^6.525)/g1^7 + (g1*t^6.553)/g2^13 + 2*g2^16*t^6.591 + (2*g2^8*t^6.662)/g1^4 + g1^3*g2^17*t^6.728 + (2*t^6.733)/g1^8 - t^6.761/g2^20 + (2*g2^9*t^6.799)/g1 + g1^6*g2^18*t^6.865 + (g2*t^6.87)/g1^5 + (g2^30*t^6.909)/g1^6 + 2*g1^2*g2^10*t^6.936 + (3*g2^2*t^7.007)/g1^2 + g1^5*g2^11*t^7.073 + (3*t^7.078)/(g1^6*g2^6) + (g2^23*t^7.117)/g1^7 + g1*g2^3*t^7.144 + 2*g2^32*t^7.183 + t^7.215/(g1^3*g2^5) + (g2^24*t^7.254)/g1^4 + g1^4*g2^4*t^7.281 + (2*t^7.352)/g2^4 + (2*g2^25*t^7.391)/g1 + (2*t^7.423)/(g1^4*g2^12) + (g2^17*t^7.462)/g1^5 + (g1^3*t^7.489)/g2^3 + g1^2*g2^26*t^7.527 + (g2^9*t^7.533)/g1^9 + t^7.56/(g1*g2^11) + (2*g2^18*t^7.599)/g1^2 + (g1^6*t^7.626)/g2^2 + g1^5*g2^27*t^7.664 + (2*g1^2*t^7.697)/g2^10 + (2*t^7.768)/(g1^2*g2^18) + (2*g2^11*t^7.807)/g1^3 + g1^4*g2^20*t^7.872 + (g2^3*t^7.878)/g1^7 + g2^12*t^7.943 + (g2^41*t^7.982)/g1 - (2*g2^4*t^8.015)/g1^4 + (g1^4*t^8.042)/g2^16 + (g2^16*t^8.058)/g1^16 + 2*g1^3*g2^13*t^8.08 + (2*t^8.113)/g2^24 + (g2^25*t^8.124)/g1^9 + (g2^5*t^8.151)/g1 + (g2^34*t^8.19)/g1^2 + t^8.223/(g1^5*g2^3) - 2*g1^2*g2^6*t^8.288 + (2*g2^18*t^8.332)/g1^10 - (3*t^8.359)/(g1^2*g2^2) + (g1^6*t^8.387)/g2^22 + (2*g2^27*t^8.398)/g1^3 + (g2^10*t^8.403)/g1^14 + g1^5*g2^7*t^8.425 + (2*g1^2*t^8.458)/g2^30 + g1^4*g2^36*t^8.464 + (g2^19*t^8.469)/g1^7 - (g1*t^8.496)/g2 + g2^28*t^8.535 + (g2^11*t^8.54)/g1^11 + t^8.567/(g1^3*g2^9) + (2*g2^20*t^8.606)/g1^4 - g1^4*t^8.633 + 2*g1^3*g2^29*t^8.672 + (2*g2^12*t^8.677)/g1^8 - (3*t^8.704)/g2^8 + (g2^21*t^8.743)/g1 + (2*g2^4*t^8.748)/g1^12 - t^8.775/(g1^4*g2^16) + (g1^4*t^8.803)/g2^36 + (2*g2^13*t^8.814)/g1^5 + (g1^3*t^8.841)/g2^7 + 3*g1^2*g2^22*t^8.88 + (g2^5*t^8.885)/g1^9 + (g2^34*t^8.923)/g1^10 + (g2^14*t^8.951)/g1^2 + (g2^43*t^8.989)/g1^3 - t^4.352/(g2^4*y) - t^6.367/(g1^4*y) - (g1^2*g2^2*t^6.641)/y - t^6.712/(g1^2*g2^6*y) - t^7.057/(g2^12*y) + (2*g2^10*t^7.303)/(g1^2*y) + (g2^2*t^7.374)/(g1^6*y) - (g1^2*t^7.401)/(g2^18*y) + (g2^3*t^7.511)/(g1^3*y) + (2*g2^4*t^7.648)/y + t^7.719/(g1^4*g2^4*y) + (g1^3*g2^5*t^7.785)/y + t^7.856/(g1*g2^3*y) + (2*g1^2*t^7.993)/(g2^2*y) + (3*t^8.064)/(g1^2*g2^10*y) + (g2^19*t^8.102)/(g1^3*y) + (g1*t^8.201)/(g2^9*y) + (2*g1^4*t^8.338)/(g2^8*y) + (g1^3*g2^21*t^8.376)/y - (g2^4*t^8.381)/(g1^8*y) + t^8.409/(g2^16*y) + (g2^13*t^8.447)/(g1*y) + (g2^5*t^8.518)/(g1^5*y) + (g1^3*t^8.546)/(g2^15*y) + (g1^2*g2^14*t^8.584)/y - (g2^6*t^8.655)/(g1^2*y) - t^8.726/(g1^6*g2^2*y) + (g1^2*t^8.754)/(g2^22*y) + (2*g1*g2^7*t^8.792)/y + (2*t^8.863)/(g1^3*g2*y) - (g1^4*g2^8*t^8.929)/y - (t^4.352*y)/g2^4 - (t^6.367*y)/g1^4 - g1^2*g2^2*t^6.641*y - (t^6.712*y)/(g1^2*g2^6) - (t^7.057*y)/g2^12 + (2*g2^10*t^7.303*y)/g1^2 + (g2^2*t^7.374*y)/g1^6 - (g1^2*t^7.401*y)/g2^18 + (g2^3*t^7.511*y)/g1^3 + 2*g2^4*t^7.648*y + (t^7.719*y)/(g1^4*g2^4) + g1^3*g2^5*t^7.785*y + (t^7.856*y)/(g1*g2^3) + (2*g1^2*t^7.993*y)/g2^2 + (3*t^8.064*y)/(g1^2*g2^10) + (g2^19*t^8.102*y)/g1^3 + (g1*t^8.201*y)/g2^9 + (2*g1^4*t^8.338*y)/g2^8 + g1^3*g2^21*t^8.376*y - (g2^4*t^8.381*y)/g1^8 + (t^8.409*y)/g2^16 + (g2^13*t^8.447*y)/g1 + (g2^5*t^8.518*y)/g1^5 + (g1^3*t^8.546*y)/g2^15 + g1^2*g2^14*t^8.584*y - (g2^6*t^8.655*y)/g1^2 - (t^8.726*y)/(g1^6*g2^2) + (g1^2*t^8.754*y)/g2^22 + 2*g1*g2^7*t^8.792*y + (2*t^8.863*y)/(g1^3*g2) - g1^4*g2^8*t^8.929*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4852 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6918 | 0.8766 | 0.7892 | [M:[1.0397, 0.7938, 1.0012, 0.8323, 1.1677, 1.0833, 0.7479, 0.9988, 0.6708], q:[0.5634, 0.3969], qb:[0.4354, 0.7708], phi:[0.4584]] | t^2.012 + t^2.244 + t^2.381 + t^2.497 + t^2.996 + t^3.119 + t^3.25 + t^3.503 + t^3.872 + t^4.003 + t^4.025 + 2*t^4.256 + t^4.372 + t^4.394 + t^4.487 + t^4.509 + t^4.625 + t^4.741 + t^4.755 + t^4.763 + t^4.878 + t^4.994 + t^5.009 + t^5.131 + t^5.24 + t^5.262 + t^5.363 + t^5.378 + 2*t^5.493 + t^5.515 + t^5.631 + 2*t^5.747 + t^5.884 + t^5.993 - 2*t^6. - t^4.375/y - t^4.375*y | detail |