Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55913 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_4M_7$ 0.6832 0.859 0.7953 [X:[], M:[1.1731, 1.0135, 0.8269, 0.7994, 0.7473, 0.6924, 1.2006], q:[0.3997, 0.4272], qb:[0.5868, 0.7734], phi:[0.4532]] [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28], [-2, 16]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_3$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ M_1$, $ M_7$, $ \phi_1q_1q_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_5^2$, $ M_3M_6$, $ M_3M_5$, $ M_6\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_6$, $ M_6q_2\tilde{q}_1$, $ M_3\phi_1^2$, $ M_2M_5$, $ M_5q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_1M_6$, $ M_6M_7$, $ M_2\phi_1^2$, $ M_1M_5$, $ \phi_1^2q_2\tilde{q}_1$, $ M_5M_7$ . -2 t^2.08 + t^2.24 + t^2.48 + t^2.72 + 2*t^3.04 + t^3.52 + t^3.6 + t^3.84 + t^4.08 + t^4.15 + 2*t^4.32 + t^4.4 + t^4.48 + t^4.56 + t^4.72 + t^4.8 + t^4.88 + 2*t^4.96 + 2*t^5.12 + t^5.2 + 2*t^5.28 + t^5.52 + t^5.6 + t^5.68 + 3*t^5.76 + t^5.84 - 2*t^6. + 4*t^6.08 + t^6.16 + t^6.23 + 2*t^6.32 + 2*t^6.4 + 3*t^6.56 + 4*t^6.64 + t^6.73 + t^6.87 + t^6.88 + 2*t^6.96 + 2*t^7.04 + 3*t^7.12 + t^7.19 + 3*t^7.2 + 2*t^7.36 + 3*t^7.44 + t^7.52 + t^7.53 + 2*t^7.6 + t^7.67 + t^7.68 + 2*t^7.76 + 2*t^7.84 + 3*t^7.92 + 4*t^8. - 2*t^8.08 + t^8.09 + 2*t^8.16 - t^8.24 + t^8.31 + 3*t^8.32 + t^8.33 + 2*t^8.4 + 2*t^8.47 + 3*t^8.56 + 2*t^8.64 + t^8.71 - t^8.72 + 6*t^8.8 + t^8.88 + 2*t^8.89 + t^8.95 - t^8.96 + t^8.97 - t^4.36/y - t^6.44/y - t^6.6/y - t^7.08/y + (2*t^7.32)/y - t^7.4/y + t^7.56/y + t^7.64/y + t^7.72/y + t^7.8/y + t^7.96/y + (3*t^8.12)/y + t^8.2/y + (3*t^8.28)/y - t^8.51/y + (2*t^8.52)/y + t^8.6/y + (3*t^8.76)/y + t^8.92/y - t^4.36*y - t^6.44*y - t^6.6*y - t^7.08*y + 2*t^7.32*y - t^7.4*y + t^7.56*y + t^7.64*y + t^7.72*y + t^7.8*y + t^7.96*y + 3*t^8.12*y + t^8.2*y + 3*t^8.28*y - t^8.51*y + 2*t^8.52*y + t^8.6*y + 3*t^8.76*y + t^8.92*y (g1^4*t^2.08)/g2^28 + (g2^18*t^2.24)/g1^2 + (g2^7*t^2.48)/g1 + t^2.72/g2^4 + (g2^8*t^3.04)/g1^2 + (g2^15*t^3.04)/g1 + (g1*t^3.52)/g2^7 + (g2^16*t^3.6)/g1^2 + (g2^5*t^3.84)/g1 + g1*g2*t^4.08 + (g1^8*t^4.15)/g2^56 + (2*g1^2*t^4.32)/g2^10 + (g2^13*t^4.4)/g1 + (g2^36*t^4.48)/g1^4 + (g1^3*t^4.56)/g2^21 + (g2^25*t^4.72)/g1^3 + (g1^4*t^4.8)/g2^32 + (g1^2*t^4.88)/g2^2 + (2*g2^14*t^4.96)/g1^2 + (g1^2*t^5.12)/g2^20 + (g1^3*t^5.12)/g2^13 + (g2^3*t^5.2)/g1 + (g2^26*t^5.28)/g1^4 + (g2^33*t^5.28)/g1^3 + (g2^22*t^5.52)/g1^2 + (g1^5*t^5.6)/g2^35 + (g1^2*t^5.68)/g2^12 + (g2^4*t^5.76)/g1^2 + (2*g2^11*t^5.76)/g1 + (g2^34*t^5.84)/g1^4 - 2*t^6. + (g2^16*t^6.08)/g1^4 + (2*g2^23*t^6.08)/g1^3 + (g2^30*t^6.08)/g1^2 + (g1^5*t^6.16)/g2^27 + (g1^12*t^6.23)/g2^84 + (g2^12*t^6.32)/g1^2 + (g2^19*t^6.32)/g1 + (2*g1^6*t^6.4)/g2^38 + (g2*t^6.56)/g1 + 2*g2^8*t^6.56 + (g1^7*t^6.64)/g2^49 + (g2^24*t^6.64)/g1^4 + (2*g2^31*t^6.64)/g1^3 + (g2^54*t^6.73)/g1^6 - t^6.8/g2^10 + (g1*t^6.8)/g2^3 + (g1^8*t^6.87)/g2^60 + (g2^20*t^6.88)/g1^2 + (g1^6*t^6.96)/g2^30 + (g2^43*t^6.96)/g1^5 + (2*g1^2*t^7.04)/g2^14 + (g2^9*t^7.12)/g1 + 2*g2^16*t^7.12 + (g1^6*t^7.19)/g2^48 + (g1^7*t^7.2)/g2^41 + (2*g2^32*t^7.2)/g1^4 + 2*g1*g2^5*t^7.36 + (2*g2^21*t^7.44)/g1^3 + (g2^28*t^7.44)/g1^2 + (g2^44*t^7.52)/g1^6 + (g2^51*t^7.53)/g1^5 + (2*g1^2*t^7.6)/g2^6 + (g1^9*t^7.67)/g2^63 + (g2^10*t^7.68)/g1^2 + (g1^6*t^7.76)/g2^40 + (g2^40*t^7.76)/g1^4 + (g1^2*t^7.84)/g2^24 + (g1^3*t^7.84)/g2^17 + 2*g2^6*t^7.92 + g1*g2^13*t^7.92 + (g2^22*t^8.)/g1^4 + (3*g2^29*t^8.)/g1^3 - (2*g1^4*t^8.08)/g2^28 + (g2^52*t^8.09)/g1^6 + t^8.16/g2^12 + g1^2*g2^2*t^8.16 + (g1^9*t^8.24)/g2^55 - (2*g2^18*t^8.24)/g1^2 + (g1^16*t^8.31)/g2^112 + (g2^34*t^8.32)/g1^6 + (2*g2^41*t^8.32)/g1^5 + (g2^48*t^8.33)/g1^4 + (2*g1^3*t^8.4)/g2^9 + (2*g1^10*t^8.47)/g2^66 + t^8.48/g1^2 - (2*g2^7*t^8.48)/g1 + g2^14*t^8.48 + (g2^30*t^8.56)/g1^4 + (2*g2^37*t^8.56)/g1^3 + (2*g1^4*t^8.64)/g2^20 + (g1^11*t^8.71)/g2^77 - (2*t^8.72)/g2^4 + g1*g2^3*t^8.72 + (g2^12*t^8.8)/g1^4 + (2*g2^19*t^8.8)/g1^3 + (3*g2^26*t^8.8)/g1^2 - (g1^4*t^8.88)/g2^38 + (g1^5*t^8.88)/g2^31 + (g2^42*t^8.88)/g1^6 + (2*g2^49*t^8.89)/g1^5 + (g1^12*t^8.95)/g2^88 - (g1*t^8.96)/g2^15 - (g1^2*t^8.96)/g2^8 + (g1^3*t^8.96)/g2 + (g2^72*t^8.97)/g1^8 - t^4.36/(g2^2*y) - (g1^4*t^6.44)/(g2^30*y) - (g2^16*t^6.6)/(g1^2*y) - t^7.08/(g2^6*y) + (2*g1^2*t^7.32)/(g2^10*y) - (g2^6*t^7.4)/(g1^2*y) + (g1^3*t^7.56)/(g2^21*y) + (g2^2*t^7.64)/y + (g2^25*t^7.72)/(g1^3*y) + (g1^4*t^7.8)/(g2^32*y) + (g2^14*t^7.96)/(g1^2*y) + (2*g1^2*t^8.12)/(g2^20*y) + (g1^3*t^8.12)/(g2^13*y) + (g2^3*t^8.2)/(g1*y) + (2*g2^26*t^8.28)/(g1^4*y) + (g2^33*t^8.28)/(g1^3*y) - (g1^8*t^8.51)/(g2^58*y) + (g2^15*t^8.52)/(g1^3*y) + (g2^22*t^8.52)/(g1^2*y) + (g1^5*t^8.6)/(g2^35*y) + (g2^4*t^8.76)/(g1^2*y) + (2*g2^11*t^8.76)/(g1*y) + (g1^3*t^8.92)/(g2^23*y) - (t^4.36*y)/g2^2 - (g1^4*t^6.44*y)/g2^30 - (g2^16*t^6.6*y)/g1^2 - (t^7.08*y)/g2^6 + (2*g1^2*t^7.32*y)/g2^10 - (g2^6*t^7.4*y)/g1^2 + (g1^3*t^7.56*y)/g2^21 + g2^2*t^7.64*y + (g2^25*t^7.72*y)/g1^3 + (g1^4*t^7.8*y)/g2^32 + (g2^14*t^7.96*y)/g1^2 + (2*g1^2*t^8.12*y)/g2^20 + (g1^3*t^8.12*y)/g2^13 + (g2^3*t^8.2*y)/g1 + (2*g2^26*t^8.28*y)/g1^4 + (g2^33*t^8.28*y)/g1^3 - (g1^8*t^8.51*y)/g2^58 + (g2^15*t^8.52*y)/g1^3 + (g2^22*t^8.52*y)/g1^2 + (g1^5*t^8.6*y)/g2^35 + (g2^4*t^8.76*y)/g1^2 + (2*g2^11*t^8.76*y)/g1 + (g1^3*t^8.92*y)/g2^23


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48167 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ 0.7001 0.8886 0.7878 [X:[], M:[1.1679, 1.0164, 0.8321, 0.7865, 0.7628, 0.6715], q:[0.3932, 0.4389], qb:[0.5903, 0.7746], phi:[0.4507]] t^2.01 + t^2.29 + t^2.36 + t^2.5 + t^2.7 + t^3.05 + t^3.09 + t^3.5 + t^3.85 + t^4.03 + t^4.09 + 2*t^4.3 + t^4.37 + t^4.44 + t^4.51 + t^4.58 + t^4.65 + 2*t^4.72 + t^4.78 + t^4.86 + t^4.89 + 2*t^4.99 + 2*t^5.06 + t^5.1 + t^5.2 + t^5.34 + t^5.38 + t^5.41 + t^5.45 + t^5.52 + t^5.58 + t^5.75 + 2*t^5.79 + t^5.86 - 2*t^6. - t^4.35/y - t^4.35*y detail