Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46743 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ 0.6793 0.8474 0.8016 [M:[1.1687, 1.0148, 0.8313, 0.788, 0.7613], q:[0.394, 0.4373], qb:[0.5912, 0.7746], phi:[0.4507]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ ${}$ -2 t^2.284 + t^2.364 + t^2.494 + t^2.704 + t^3.044 + t^3.086 + t^3.506 + t^3.846 + t^3.976 + t^4.097 + t^4.308 + t^4.438 + t^4.568 + t^4.648 + t^4.728 + t^4.778 + t^4.858 + t^4.899 + 2*t^4.988 + t^5.068 + t^5.198 + t^5.328 + t^5.369 + t^5.408 + t^5.45 + t^5.58 + t^5.749 + 2*t^5.79 - 2*t^6. + t^6.089 + t^6.13 + t^6.171 + t^6.21 + t^6.26 + t^6.34 + t^6.381 + t^6.47 + t^6.55 + t^6.592 + t^6.672 + t^6.68 + t^6.721 - t^6.761 + t^6.802 + t^6.851 + 2*t^6.932 + t^7.012 + t^7.021 + 2*t^7.062 + t^7.092 + t^7.142 + 2*t^7.183 + t^7.263 + t^7.272 + t^7.352 + t^7.393 + t^7.432 + 2*t^7.482 + t^7.523 + t^7.562 + t^7.603 + t^7.612 + t^7.653 + 2*t^7.692 + t^7.773 + t^7.822 + t^7.863 + t^7.944 + t^7.952 + t^7.985 + t^8.032 + 3*t^8.074 + t^8.113 - t^8.284 - 3*t^8.364 + t^8.373 + t^8.405 + 2*t^8.414 + 2*t^8.453 + t^8.455 - t^8.494 + t^8.535 + t^8.544 + 2*t^8.665 - 2*t^8.704 + t^8.754 + t^8.793 + 2*t^8.834 + 3*t^8.875 - t^8.956 + 2*t^8.964 + t^8.997 - t^4.352/y - t^6.636/y - t^6.716/y - t^7.056/y + t^7.308/y - t^7.397/y + (2*t^7.648)/y + t^7.778/y + t^7.858/y + (2*t^7.988)/y + (2*t^8.068)/y + t^8.198/y + t^8.328/y + t^8.369/y + t^8.408/y + t^8.45/y + t^8.538/y + t^8.58/y + t^8.749/y + (2*t^8.79)/y + t^8.87/y - t^8.92/y - t^4.352*y - t^6.636*y - t^6.716*y - t^7.056*y + t^7.308*y - t^7.397*y + 2*t^7.648*y + t^7.778*y + t^7.858*y + 2*t^7.988*y + 2*t^8.068*y + t^8.198*y + t^8.328*y + t^8.369*y + t^8.408*y + t^8.45*y + t^8.538*y + t^8.58*y + t^8.749*y + 2*t^8.79*y + t^8.87*y - t^8.92*y (g2^18*t^2.284)/g1^2 + (g1^2*t^2.364)/g2^16 + (g2^7*t^2.494)/g1 + t^2.704/g2^4 + (g2^8*t^3.044)/g1^2 + (g2^15*t^3.086)/g1 + (g1*t^3.506)/g2^7 + (g2^5*t^3.846)/g1 + (g2^28*t^3.976)/g1^4 + g1*g2*t^4.097 + (g1^2*t^4.308)/g2^10 + (g2^13*t^4.438)/g1 + (g2^36*t^4.568)/g1^4 + g2^2*t^4.648 + (g1^4*t^4.728)/g2^32 + (g2^25*t^4.778)/g1^3 + (g1*t^4.858)/g2^9 + (g1^2*t^4.899)/g2^2 + (2*g2^14*t^4.988)/g1^2 + (g1^2*t^5.068)/g2^20 + (g2^3*t^5.198)/g1 + (g2^26*t^5.328)/g1^4 + (g2^33*t^5.369)/g1^3 + t^5.408/g2^8 + (g1*t^5.45)/g2 + (g2^22*t^5.58)/g1^2 + (g2^4*t^5.749)/g1^2 + (2*g2^11*t^5.79)/g1 - 2*t^6. + (g2^16*t^6.089)/g1^4 + (g2^23*t^6.13)/g1^3 + (g2^30*t^6.171)/g1^2 + (g1*t^6.21)/g2^11 + (g2^46*t^6.26)/g1^6 + (g2^12*t^6.34)/g1^2 + (g2^19*t^6.381)/g1 + (g2^35*t^6.47)/g1^5 + (g2*t^6.55)/g1 + g2^8*t^6.592 + (g1^4*t^6.672)/g2^26 + (g2^24*t^6.68)/g1^4 + (g2^31*t^6.721)/g1^3 - t^6.761/g2^10 + (g1*t^6.802)/g2^3 + (g2^54*t^6.851)/g1^6 + (2*g2^20*t^6.932)/g1^2 + (g1^2*t^7.012)/g2^14 + (g2^36*t^7.021)/g1^6 + (2*g2^43*t^7.062)/g1^5 + (g1^6*t^7.092)/g2^48 + (g2^9*t^7.142)/g1 + 2*g2^16*t^7.183 + (g1^4*t^7.263)/g2^18 + (g2^32*t^7.272)/g1^4 + t^7.352/g2^2 + g1*g2^5*t^7.393 + (g1^4*t^7.432)/g2^36 + (2*g2^21*t^7.482)/g1^3 + (g2^28*t^7.523)/g1^2 + (g1*t^7.562)/g2^13 + (g1^2*t^7.603)/g2^6 + (g2^44*t^7.612)/g1^6 + (g2^51*t^7.653)/g1^5 + (2*g2^10*t^7.692)/g1^2 + (g1^2*t^7.773)/g2^24 + (g2^33*t^7.822)/g1^5 + (g2^40*t^7.863)/g1^4 + g2^6*t^7.944 + (g2^56*t^7.952)/g1^8 + g1*g2^13*t^7.985 + (g2^22*t^8.032)/g1^4 + (3*g2^29*t^8.074)/g1^3 + t^8.113/g2^12 - (g2^18*t^8.284)/g1^2 - (3*g1^2*t^8.364)/g2^16 + (g2^34*t^8.373)/g1^6 + (g1^3*t^8.405)/g2^9 + (2*g2^41*t^8.414)/g1^5 + (2*t^8.453)/g1^2 + (g2^48*t^8.455)/g1^4 - (g2^7*t^8.494)/g1 + g2^14*t^8.535 + (g2^64*t^8.544)/g1^8 + (2*g2^37*t^8.665)/g1^3 - (2*t^8.704)/g2^4 + (g2^53*t^8.754)/g1^7 + (g2^12*t^8.793)/g1^4 + (2*g2^19*t^8.834)/g1^3 + (3*g2^26*t^8.875)/g1^2 - (g1^2*t^8.956)/g2^8 + (2*g2^42*t^8.964)/g1^6 + (g1^3*t^8.997)/g2 - t^4.352/(g2^2*y) - (g2^16*t^6.636)/(g1^2*y) - (g1^2*t^6.716)/(g2^18*y) - t^7.056/(g2^6*y) + (g1^2*t^7.308)/(g2^10*y) - (g2^6*t^7.397)/(g1^2*y) + (2*g2^2*t^7.648)/y + (g2^25*t^7.778)/(g1^3*y) + (g1*t^7.858)/(g2^9*y) + (2*g2^14*t^7.988)/(g1^2*y) + (2*g1^2*t^8.068)/(g2^20*y) + (g2^3*t^8.198)/(g1*y) + (g2^26*t^8.328)/(g1^4*y) + (g2^33*t^8.369)/(g1^3*y) + t^8.408/(g2^8*y) + (g1*t^8.45)/(g2*y) + (g2^15*t^8.538)/(g1^3*y) + (g2^22*t^8.58)/(g1^2*y) + (g2^4*t^8.749)/(g1^2*y) + (2*g2^11*t^8.79)/(g1*y) + (g1^3*t^8.87)/(g2^23*y) - (g2^34*t^8.92)/(g1^4*y) - (t^4.352*y)/g2^2 - (g2^16*t^6.636*y)/g1^2 - (g1^2*t^6.716*y)/g2^18 - (t^7.056*y)/g2^6 + (g1^2*t^7.308*y)/g2^10 - (g2^6*t^7.397*y)/g1^2 + 2*g2^2*t^7.648*y + (g2^25*t^7.778*y)/g1^3 + (g1*t^7.858*y)/g2^9 + (2*g2^14*t^7.988*y)/g1^2 + (2*g1^2*t^8.068*y)/g2^20 + (g2^3*t^8.198*y)/g1 + (g2^26*t^8.328*y)/g1^4 + (g2^33*t^8.369*y)/g1^3 + (t^8.408*y)/g2^8 + (g1*t^8.45*y)/g2 + (g2^15*t^8.538*y)/g1^3 + (g2^22*t^8.58*y)/g1^2 + (g2^4*t^8.749*y)/g1^2 + (2*g2^11*t^8.79*y)/g1 + (g1^3*t^8.87*y)/g2^23 - (g2^34*t^8.92*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48173 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{5}$ 0.6593 0.8223 0.8018 [M:[1.1149, 1.1485, 0.8851, 0.6891, 0.8515], q:[0.3446, 0.5406], qb:[0.5069, 0.7703], phi:[0.4594]] t^2.067 + t^2.554 + t^2.655 + t^2.756 + t^3.143 + t^3.345 + t^3.446 + t^3.832 + t^3.933 + t^4.034 + t^4.135 + t^4.42 + t^4.521 + 2*t^4.622 + t^4.723 + t^4.824 + t^5.109 + 2*t^5.21 + 2*t^5.311 + t^5.412 + t^5.513 + t^5.697 + t^5.798 + 2*t^5.899 - t^4.378/y - t^4.378*y detail
48238 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ 0.6768 0.8462 0.7998 [M:[1.1595, 1.0724, 0.8405, 0.7827, 0.7535], q:[0.3914, 0.4492], qb:[0.5362, 0.7681], phi:[0.4638]] t^2.26 + t^2.348 + t^2.522 + t^2.783 + t^2.956 + t^3.217 + t^3.478 + 2*t^3.913 + t^4.086 + t^4.174 + t^4.348 + t^4.521 + 2*t^4.609 + t^4.696 + t^4.782 + t^4.87 + 2*t^5.043 + t^5.131 + t^5.217 + 2*t^5.304 + 2*t^5.478 + t^5.565 + 2*t^5.739 + t^5.912 - t^6. - t^4.391/y - t^4.391*y detail
48277 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{5}^{2}$ + ${ }M_{4}X_{1}$ 0.601 0.726 0.8278 [X:[1.4067], M:[1.0933, 1.0336, 0.9067, 0.5933, 1.0], q:[0.2966, 0.6101], qb:[0.6697, 0.7966], phi:[0.4067]] t^2.44 + t^2.72 + t^3. + t^3.101 + t^3.28 + t^3.839 + t^3.94 + t^4.119 + t^4.22 + t^4.399 + t^4.881 + t^5.161 + t^5.239 + 2*t^5.44 + t^5.541 + t^5.72 - t^6. - t^4.22/y - t^4.22*y detail
48213 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{1}q_{2}$ 0.6995 0.8854 0.79 [M:[1.1668, 1.022, 0.8332, 0.7855, 0.7627, 0.7149], q:[0.3927, 0.4405], qb:[0.5853, 0.7741], phi:[0.4519]] t^2.145 + t^2.288 + t^2.356 + t^2.5 + t^2.711 + t^3.066 + t^3.077 + t^3.5 + t^3.998 + t^4.078 + 2*t^4.29 + 2*t^4.433 + t^4.501 + t^4.576 + 2*t^4.644 + t^4.713 + t^4.788 + 2*t^4.856 + t^4.867 + 2*t^4.999 + t^5.068 + 2*t^5.211 + t^5.222 + t^5.354 + t^5.365 + t^5.422 + t^5.434 + t^5.577 + t^5.645 + t^5.777 + 2*t^5.788 - 2*t^6. - t^4.356/y - t^4.356*y detail
48167 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7001 0.8886 0.7878 [M:[1.1679, 1.0164, 0.8321, 0.7865, 0.7628, 0.6715], q:[0.3932, 0.4389], qb:[0.5903, 0.7746], phi:[0.4507]] t^2.015 + t^2.288 + t^2.359 + t^2.496 + t^2.704 + t^3.049 + t^3.088 + t^3.504 + t^3.849 + t^4.029 + t^4.095 + 2*t^4.303 + t^4.374 + t^4.44 + t^4.511 + t^4.577 + t^4.648 + 2*t^4.719 + t^4.785 + t^4.856 + t^4.894 + 2*t^4.993 + 2*t^5.064 + t^5.102 + t^5.201 + t^5.338 + t^5.376 + t^5.409 + t^5.447 + t^5.518 + t^5.584 + t^5.754 + 2*t^5.792 + t^5.863 - 2*t^6. - t^4.352/y - t^4.352*y detail
46799 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.6851 0.8556 0.8007 [M:[1.1631, 0.9791, 0.8369, 0.7612, 0.8037, 0.9034], q:[0.3806, 0.4563], qb:[0.6403, 0.7825], phi:[0.4351]] t^2.284 + t^2.411 + t^2.511 + t^2.61 + t^2.71 + t^2.937 + t^3.489 + t^3.816 + t^4.043 + t^4.268 + t^4.368 + t^4.567 + t^4.595 + t^4.695 + t^4.794 + t^4.822 + t^4.894 + t^4.922 + t^4.994 + 2*t^5.021 + 2*t^5.121 + t^5.147 + 2*t^5.221 + t^5.321 + t^5.348 + t^5.42 + t^5.548 + t^5.647 + t^5.874 + t^5.9 - 2*t^6. - t^4.305/y - t^4.305*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46292 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.6613 0.8142 0.8122 [M:[1.1609, 1.0162, 0.8391, 0.7677], q:[0.3838, 0.4553], qb:[0.6, 0.777], phi:[0.446]] t^2.303 + t^2.517 + t^2.676 + t^3.048 + t^3.166 + t^3.483 + t^3.641 + t^3.855 + t^4.07 + t^4.131 + t^4.289 + t^4.504 + t^4.606 + t^4.82 + t^4.938 + t^4.979 + t^5.035 + t^5.193 + t^5.352 + t^5.469 + t^5.683 + t^5.724 + t^5.842 + t^5.944 - 2*t^6. - t^4.338/y - t^4.338*y detail