Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55918 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ 0.7146 0.9134 0.7823 [M:[1.1709, 1.0101, 0.8291, 0.7925, 0.7568, 0.6837, 0.8291], q:[0.3963, 0.4328], qb:[0.5936, 0.7747], phi:[0.4507]] [M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28], [-1, 7]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.051 + t^2.271 + t^2.378 + 2*t^2.487 + t^2.704 + t^3.03 + t^3.079 + t^3.839 + t^4.102 + t^4.105 + 2*t^4.322 + t^4.429 + t^4.431 + 2*t^4.538 + t^4.541 + t^4.648 + 2*t^4.755 + 2*t^4.758 + 2*t^4.865 + t^4.914 + 4*t^4.974 + 2*t^5.081 + t^5.131 + 2*t^5.191 + t^5.301 + t^5.35 + t^5.408 + t^5.457 + t^5.518 + 2*t^5.567 + t^5.734 + t^5.783 - 3*t^6. + t^6.061 + t^6.11 + t^6.153 + t^6.156 + t^6.159 + t^6.326 + 2*t^6.373 + t^6.376 + t^6.48 + t^6.482 + 2*t^6.589 + 2*t^6.592 + 2*t^6.699 + t^6.702 - t^6.76 + 2*t^6.806 + 4*t^6.809 + t^6.812 + 2*t^6.916 + 3*t^6.919 + t^6.965 + 4*t^7.026 + 2*t^7.028 + 3*t^7.133 + 2*t^7.135 + t^7.182 + 2*t^7.184 + 3*t^7.242 + 3*t^7.245 + t^7.291 + 3*t^7.352 + 3*t^7.401 + 2*t^7.459 + 5*t^7.462 + t^7.508 + t^7.511 + 3*t^7.569 + t^7.571 + 2*t^7.618 + t^7.62 + 4*t^7.678 + 2*t^7.785 + t^7.788 + 2*t^7.837 + t^7.895 + t^7.944 + t^7.993 + 2*t^8.005 - 3*t^8.051 + 3*t^8.054 + 2*t^8.112 + t^8.204 + t^8.207 + t^8.21 + t^8.221 - t^8.268 - 2*t^8.271 + t^8.331 - 4*t^8.378 + t^8.38 + 2*t^8.424 + t^8.427 + t^8.429 + 2*t^8.438 - 6*t^8.487 + t^8.531 + t^8.534 + t^8.536 + t^8.548 - t^8.594 + 2*t^8.641 + 2*t^8.643 + 3*t^8.646 - 4*t^8.704 + 2*t^8.75 + t^8.753 + t^8.765 - t^8.811 + t^8.814 + 2*t^8.857 + 4*t^8.86 + 3*t^8.863 - t^8.921 + 2*t^8.967 + t^8.97 + t^8.972 - t^4.352/y - t^6.403/y - t^6.622/y - t^6.729/y - t^6.839/y - t^7.056/y + (2*t^7.322)/y - t^7.382/y + t^7.429/y + (2*t^7.538)/y + (2*t^7.648)/y + t^7.755/y + (2*t^7.758)/y + (3*t^7.865)/y + (3*t^7.974)/y + (3*t^8.081)/y + t^8.131/y + (2*t^8.191)/y + (2*t^8.301)/y + t^8.35/y + t^8.408/y - t^8.454/y + t^8.457/y + (2*t^8.518)/y + (2*t^8.567)/y - t^8.674/y + t^8.734/y - t^8.781/y + t^8.783/y - t^8.893/y - t^4.352*y - t^6.403*y - t^6.622*y - t^6.729*y - t^6.839*y - t^7.056*y + 2*t^7.322*y - t^7.382*y + t^7.429*y + 2*t^7.538*y + 2*t^7.648*y + t^7.755*y + 2*t^7.758*y + 3*t^7.865*y + 3*t^7.974*y + 3*t^8.081*y + t^8.131*y + 2*t^8.191*y + 2*t^8.301*y + t^8.35*y + t^8.408*y - t^8.454*y + t^8.457*y + 2*t^8.518*y + 2*t^8.567*y - t^8.674*y + t^8.734*y - t^8.781*y + t^8.783*y - t^8.893*y (g1^4*t^2.051)/g2^28 + (g2^18*t^2.271)/g1^2 + (g1^2*t^2.378)/g2^16 + (2*g2^7*t^2.487)/g1 + t^2.704/g2^4 + (g2^8*t^3.03)/g1^2 + (g2^15*t^3.079)/g1 + (g2^5*t^3.839)/g1 + (g1^8*t^4.102)/g2^56 + g1*g2*t^4.105 + (2*g1^2*t^4.322)/g2^10 + (g1^6*t^4.429)/g2^44 + (g2^13*t^4.431)/g1 + (2*g1^3*t^4.538)/g2^21 + (g2^36*t^4.541)/g1^4 + g2^2*t^4.648 + (2*g1^4*t^4.755)/g2^32 + (2*g2^25*t^4.758)/g1^3 + (2*g1*t^4.865)/g2^9 + (g1^2*t^4.914)/g2^2 + (4*g2^14*t^4.974)/g1^2 + (2*g1^2*t^5.081)/g2^20 + (g1^3*t^5.131)/g2^13 + (2*g2^3*t^5.191)/g1 + (g2^26*t^5.301)/g1^4 + (g2^33*t^5.35)/g1^3 + t^5.408/g2^8 + (g1*t^5.457)/g2 + (g2^15*t^5.518)/g1^3 + (2*g2^22*t^5.567)/g1^2 + (g2^4*t^5.734)/g1^2 + (g2^11*t^5.783)/g1 - 3*t^6. + (g2^16*t^6.061)/g1^4 + (g2^23*t^6.11)/g1^3 + (g1^12*t^6.153)/g2^84 + (g1^5*t^6.156)/g2^27 + (g2^30*t^6.159)/g1^2 + (g2^12*t^6.326)/g1^2 + (2*g1^6*t^6.373)/g2^38 + (g2^19*t^6.376)/g1 + (g1^10*t^6.48)/g2^72 + (g1^3*t^6.482)/g2^15 + (2*g1^7*t^6.589)/g2^49 + 2*g2^8*t^6.592 + (2*g1^4*t^6.699)/g2^26 + (g2^31*t^6.702)/g1^3 - t^6.76/g2^10 + (2*g1^8*t^6.806)/g2^60 + (4*g1*t^6.809)/g2^3 + (g2^54*t^6.812)/g1^6 + (2*g1^5*t^6.916)/g2^37 + (3*g2^20*t^6.919)/g1^2 + (g1^6*t^6.965)/g2^30 + (4*g1^2*t^7.026)/g2^14 + (2*g2^43*t^7.028)/g1^5 + (3*g1^6*t^7.133)/g2^48 + (2*g2^9*t^7.135)/g1 + (g1^7*t^7.182)/g2^41 + 2*g2^16*t^7.184 + (3*g1^3*t^7.242)/g2^25 + (3*g2^32*t^7.245)/g1^4 + (g1^4*t^7.291)/g2^18 + (3*t^7.352)/g2^2 + 3*g1*g2^5*t^7.401 + (2*g1^4*t^7.459)/g2^36 + (5*g2^21*t^7.462)/g1^3 + (g1^5*t^7.508)/g2^29 + (g2^28*t^7.511)/g1^2 + (3*g1*t^7.569)/g2^13 + (g2^44*t^7.571)/g1^6 + (2*g1^2*t^7.618)/g2^6 + (g2^51*t^7.62)/g1^5 + (4*g2^10*t^7.678)/g1^2 + (2*g1^2*t^7.785)/g2^24 + (g2^33*t^7.788)/g1^5 + (2*g2^40*t^7.837)/g1^4 + t^7.895/(g1*g2) + g2^6*t^7.944 + g1*g2^13*t^7.993 + (2*g2^22*t^8.005)/g1^4 - (3*g1^4*t^8.051)/g2^28 + (3*g2^29*t^8.054)/g1^3 + (2*t^8.112)/g2^12 + (g1^16*t^8.204)/g2^112 + (g1^9*t^8.207)/g2^55 + g1^2*g2^2*t^8.21 + (g2^11*t^8.221)/g1^3 - (g1^5*t^8.268)/g2^39 - (2*g2^18*t^8.271)/g1^2 + (g2^34*t^8.331)/g1^6 - (4*g1^2*t^8.378)/g2^16 + (g2^41*t^8.38)/g1^5 + (2*g1^10*t^8.424)/g2^66 + (g1^3*t^8.427)/g2^9 + (g2^48*t^8.429)/g1^4 + (2*t^8.438)/g1^2 - (6*g2^7*t^8.487)/g1 + (g1^14*t^8.531)/g2^100 + (g1^7*t^8.534)/g2^43 + g2^14*t^8.536 + (g2^23*t^8.548)/g1^5 - (g1^3*t^8.594)/g2^27 + (2*g1^11*t^8.641)/g2^77 + (2*g1^4*t^8.643)/g2^20 + (3*g2^37*t^8.646)/g1^3 - (4*t^8.704)/g2^4 + (2*g1^8*t^8.75)/g2^54 + g1*g2^3*t^8.753 + (g2^12*t^8.765)/g1^4 - (g1^4*t^8.811)/g2^38 + (g2^19*t^8.814)/g1^3 + (2*g1^12*t^8.857)/g2^88 + (4*g1^5*t^8.86)/g2^31 + (3*g2^26*t^8.863)/g1^2 - (g1*t^8.921)/g2^15 + (2*g1^9*t^8.967)/g2^65 + (g1^2*t^8.97)/g2^8 + (g2^49*t^8.972)/g1^5 - t^4.352/(g2^2*y) - (g1^4*t^6.403)/(g2^30*y) - (g2^16*t^6.622)/(g1^2*y) - (g1^2*t^6.729)/(g2^18*y) - (g2^5*t^6.839)/(g1*y) - t^7.056/(g2^6*y) + (2*g1^2*t^7.322)/(g2^10*y) - (g2^6*t^7.382)/(g1^2*y) + (g1^6*t^7.429)/(g2^44*y) + (2*g1^3*t^7.538)/(g2^21*y) + (2*g2^2*t^7.648)/y + (g1^4*t^7.755)/(g2^32*y) + (2*g2^25*t^7.758)/(g1^3*y) + (3*g1*t^7.865)/(g2^9*y) + (3*g2^14*t^7.974)/(g1^2*y) + (3*g1^2*t^8.081)/(g2^20*y) + (g1^3*t^8.131)/(g2^13*y) + (2*g2^3*t^8.191)/(g1*y) + (2*g2^26*t^8.301)/(g1^4*y) + (g2^33*t^8.35)/(g1^3*y) + t^8.408/(g2^8*y) - (g1^8*t^8.454)/(g2^58*y) + (g1*t^8.457)/(g2*y) + (2*g2^15*t^8.518)/(g1^3*y) + (2*g2^22*t^8.567)/(g1^2*y) - (g1^2*t^8.674)/(g2^12*y) + (g2^4*t^8.734)/(g1^2*y) - (g1^6*t^8.781)/(g2^46*y) + (g2^11*t^8.783)/(g1*y) - (g2^34*t^8.893)/(g1^4*y) - (t^4.352*y)/g2^2 - (g1^4*t^6.403*y)/g2^30 - (g2^16*t^6.622*y)/g1^2 - (g1^2*t^6.729*y)/g2^18 - (g2^5*t^6.839*y)/g1 - (t^7.056*y)/g2^6 + (2*g1^2*t^7.322*y)/g2^10 - (g2^6*t^7.382*y)/g1^2 + (g1^6*t^7.429*y)/g2^44 + (2*g1^3*t^7.538*y)/g2^21 + 2*g2^2*t^7.648*y + (g1^4*t^7.755*y)/g2^32 + (2*g2^25*t^7.758*y)/g1^3 + (3*g1*t^7.865*y)/g2^9 + (3*g2^14*t^7.974*y)/g1^2 + (3*g1^2*t^8.081*y)/g2^20 + (g1^3*t^8.131*y)/g2^13 + (2*g2^3*t^8.191*y)/g1 + (2*g2^26*t^8.301*y)/g1^4 + (g2^33*t^8.35*y)/g1^3 + (t^8.408*y)/g2^8 - (g1^8*t^8.454*y)/g2^58 + (g1*t^8.457*y)/g2 + (2*g2^15*t^8.518*y)/g1^3 + (2*g2^22*t^8.567*y)/g1^2 - (g1^2*t^8.674*y)/g2^12 + (g2^4*t^8.734*y)/g1^2 - (g1^6*t^8.781*y)/g2^46 + (g2^11*t^8.783*y)/g1 - (g2^34*t^8.893*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57641 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{8}q_{2}\tilde{q}_{1}$ 0.7202 0.9221 0.7811 [M:[1.1676, 0.9694, 0.8324, 0.77, 0.7952, 0.6702, 0.8324, 0.9069], q:[0.385, 0.4475], qb:[0.6456, 0.7826], phi:[0.4348]] t^2.011 + t^2.31 + t^2.386 + 2*t^2.497 + t^2.609 + t^2.721 + t^2.908 + t^3.802 + t^4.021 + t^4.285 + t^4.321 + 2*t^4.396 + 2*t^4.508 + t^4.584 + 2*t^4.62 + t^4.695 + t^4.731 + t^4.771 + 2*t^4.807 + 2*t^4.883 + 2*t^4.919 + 4*t^4.995 + t^5.031 + 3*t^5.106 + t^5.178 + 3*t^5.218 + t^5.294 + t^5.33 + t^5.406 + t^5.442 + t^5.517 + t^5.629 + t^5.817 - 3*t^6. - t^4.305/y - t^4.305*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48167 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.7001 0.8886 0.7878 [M:[1.1679, 1.0164, 0.8321, 0.7865, 0.7628, 0.6715], q:[0.3932, 0.4389], qb:[0.5903, 0.7746], phi:[0.4507]] t^2.015 + t^2.288 + t^2.359 + t^2.496 + t^2.704 + t^3.049 + t^3.088 + t^3.504 + t^3.849 + t^4.029 + t^4.095 + 2*t^4.303 + t^4.374 + t^4.44 + t^4.511 + t^4.577 + t^4.648 + 2*t^4.719 + t^4.785 + t^4.856 + t^4.894 + 2*t^4.993 + 2*t^5.064 + t^5.102 + t^5.201 + t^5.338 + t^5.376 + t^5.409 + t^5.447 + t^5.518 + t^5.584 + t^5.754 + 2*t^5.792 + t^5.863 - 2*t^6. - t^4.352/y - t^4.352*y detail