Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55918 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ 0.7146 0.9134 0.7823 [X:[], M:[1.1709, 1.0101, 0.8291, 0.7925, 0.7568, 0.6837, 0.8291], q:[0.3963, 0.4328], qb:[0.5936, 0.7747], phi:[0.4507]] [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [-2, 18], [4, -28], [-1, 7]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_4$, $ M_3$, $ M_7$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_6^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_6$, $ M_6M_7$, $ M_5^2$, $ M_4M_5$, $ M_4^2$, $ M_6\phi_1^2$, $ M_3M_5$, $ M_5M_7$, $ M_3M_4$, $ M_4M_7$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_3M_7$, $ M_7^2$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_6$, $ M_4\phi_1^2$, $ M_6q_2\tilde{q}_1$, $ M_3\phi_1^2$, $ M_7\phi_1^2$, $ M_2M_5$, $ M_5q_2\tilde{q}_1$, $ M_2M_4$, $ \phi_1^4$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_2M_7$, $ M_3q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_2\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$ . -3 t^2.05 + t^2.27 + t^2.38 + 2*t^2.49 + t^2.7 + t^3.03 + t^3.08 + t^3.84 + 2*t^4.1 + 2*t^4.32 + 2*t^4.43 + 3*t^4.54 + t^4.65 + 4*t^4.76 + 2*t^4.86 + t^4.91 + 4*t^4.97 + 2*t^5.08 + t^5.13 + 2*t^5.19 + t^5.3 + t^5.35 + t^5.41 + t^5.46 + t^5.52 + 2*t^5.57 + t^5.73 + t^5.78 - 3*t^6. + t^6.06 + t^6.11 + t^6.15 + 2*t^6.16 + t^6.33 + 2*t^6.37 + t^6.38 + 2*t^6.48 + 4*t^6.59 + 3*t^6.7 - t^6.76 + 7*t^6.81 + 5*t^6.92 + t^6.96 + 6*t^7.03 + 3*t^7.13 + 2*t^7.14 + 3*t^7.18 + 6*t^7.24 + t^7.29 + 3*t^7.35 + 3*t^7.4 + 7*t^7.46 + 2*t^7.51 + 4*t^7.57 + 3*t^7.62 + 4*t^7.68 + 3*t^7.79 + 2*t^7.84 + t^7.9 + t^7.94 + t^7.99 + 2*t^8. + 2*t^8.11 + t^8.2 + 2*t^8.21 + t^8.22 - 3*t^8.27 + t^8.33 - 3*t^8.38 + 2*t^8.42 + 2*t^8.43 + 2*t^8.44 - 6*t^8.49 + 2*t^8.53 + t^8.54 + t^8.55 - t^8.59 + 4*t^8.64 + 3*t^8.65 - 4*t^8.7 + 3*t^8.75 + t^8.76 + 9*t^8.86 - t^8.92 + 4*t^8.97 - t^4.35/y - t^6.4/y - t^6.62/y - t^6.73/y - t^6.84/y - t^7.06/y + (2*t^7.32)/y - t^7.38/y + t^7.43/y + (2*t^7.54)/y + (2*t^7.65)/y + (3*t^7.76)/y + (3*t^7.86)/y + (3*t^7.97)/y + (3*t^8.08)/y + t^8.13/y + (2*t^8.19)/y + (2*t^8.3)/y + t^8.35/y + t^8.41/y - t^8.45/y + t^8.46/y + (2*t^8.52)/y + (2*t^8.57)/y - t^8.67/y + t^8.73/y - t^8.89/y - t^4.35*y - t^6.4*y - t^6.62*y - t^6.73*y - t^6.84*y - t^7.06*y + 2*t^7.32*y - t^7.38*y + t^7.43*y + 2*t^7.54*y + 2*t^7.65*y + 3*t^7.76*y + 3*t^7.86*y + 3*t^7.97*y + 3*t^8.08*y + t^8.13*y + 2*t^8.19*y + 2*t^8.3*y + t^8.35*y + t^8.41*y - t^8.45*y + t^8.46*y + 2*t^8.52*y + 2*t^8.57*y - t^8.67*y + t^8.73*y - t^8.89*y (g1^4*t^2.05)/g2^28 + (g2^18*t^2.27)/g1^2 + (g1^2*t^2.38)/g2^16 + (2*g2^7*t^2.49)/g1 + t^2.7/g2^4 + (g2^8*t^3.03)/g1^2 + (g2^15*t^3.08)/g1 + (g2^5*t^3.84)/g1 + (g1^8*t^4.1)/g2^56 + g1*g2*t^4.1 + (2*g1^2*t^4.32)/g2^10 + (g1^6*t^4.43)/g2^44 + (g2^13*t^4.43)/g1 + (2*g1^3*t^4.54)/g2^21 + (g2^36*t^4.54)/g1^4 + g2^2*t^4.65 + (2*g1^4*t^4.76)/g2^32 + (2*g2^25*t^4.76)/g1^3 + (2*g1*t^4.86)/g2^9 + (g1^2*t^4.91)/g2^2 + (4*g2^14*t^4.97)/g1^2 + (2*g1^2*t^5.08)/g2^20 + (g1^3*t^5.13)/g2^13 + (2*g2^3*t^5.19)/g1 + (g2^26*t^5.3)/g1^4 + (g2^33*t^5.35)/g1^3 + t^5.41/g2^8 + (g1*t^5.46)/g2 + (g2^15*t^5.52)/g1^3 + (2*g2^22*t^5.57)/g1^2 + (g2^4*t^5.73)/g1^2 + (g2^11*t^5.78)/g1 - 3*t^6. + (g2^16*t^6.06)/g1^4 + (g2^23*t^6.11)/g1^3 + (g1^12*t^6.15)/g2^84 + (g1^5*t^6.16)/g2^27 + (g2^30*t^6.16)/g1^2 + (g2^12*t^6.33)/g1^2 + (2*g1^6*t^6.37)/g2^38 + (g2^19*t^6.38)/g1 + (g1^10*t^6.48)/g2^72 + (g1^3*t^6.48)/g2^15 + (2*g1^7*t^6.59)/g2^49 + 2*g2^8*t^6.59 + (2*g1^4*t^6.7)/g2^26 + (g2^31*t^6.7)/g1^3 - t^6.76/g2^10 + (2*g1^8*t^6.81)/g2^60 + (4*g1*t^6.81)/g2^3 + (g2^54*t^6.81)/g1^6 + (2*g1^5*t^6.92)/g2^37 + (3*g2^20*t^6.92)/g1^2 + (g1^6*t^6.96)/g2^30 + (4*g1^2*t^7.03)/g2^14 + (2*g2^43*t^7.03)/g1^5 + (3*g1^6*t^7.13)/g2^48 + (2*g2^9*t^7.14)/g1 + (g1^7*t^7.18)/g2^41 + 2*g2^16*t^7.18 + (3*g1^3*t^7.24)/g2^25 + (3*g2^32*t^7.24)/g1^4 + (g1^4*t^7.29)/g2^18 + (3*t^7.35)/g2^2 + 3*g1*g2^5*t^7.4 + (2*g1^4*t^7.46)/g2^36 + (5*g2^21*t^7.46)/g1^3 + (g1^5*t^7.51)/g2^29 + (g2^28*t^7.51)/g1^2 + (3*g1*t^7.57)/g2^13 + (g2^44*t^7.57)/g1^6 + (2*g1^2*t^7.62)/g2^6 + (g2^51*t^7.62)/g1^5 + (4*g2^10*t^7.68)/g1^2 + (2*g1^2*t^7.79)/g2^24 + (g2^33*t^7.79)/g1^5 + (2*g2^40*t^7.84)/g1^4 + t^7.9/(g1*g2) + g2^6*t^7.94 + g1*g2^13*t^7.99 + (2*g2^22*t^8.)/g1^4 - (3*g1^4*t^8.05)/g2^28 + (3*g2^29*t^8.05)/g1^3 + (2*t^8.11)/g2^12 + (g1^16*t^8.2)/g2^112 + (g1^9*t^8.21)/g2^55 + g1^2*g2^2*t^8.21 + (g2^11*t^8.22)/g1^3 - (g1^5*t^8.27)/g2^39 - (2*g2^18*t^8.27)/g1^2 + (g2^34*t^8.33)/g1^6 - (4*g1^2*t^8.38)/g2^16 + (g2^41*t^8.38)/g1^5 + (2*g1^10*t^8.42)/g2^66 + (g1^3*t^8.43)/g2^9 + (g2^48*t^8.43)/g1^4 + (2*t^8.44)/g1^2 - (6*g2^7*t^8.49)/g1 + (g1^14*t^8.53)/g2^100 + (g1^7*t^8.53)/g2^43 + g2^14*t^8.54 + (g2^23*t^8.55)/g1^5 - (g1^3*t^8.59)/g2^27 + (2*g1^11*t^8.64)/g2^77 + (2*g1^4*t^8.64)/g2^20 + (3*g2^37*t^8.65)/g1^3 - (4*t^8.7)/g2^4 + (2*g1^8*t^8.75)/g2^54 + g1*g2^3*t^8.75 + (g2^12*t^8.76)/g1^4 - (g1^4*t^8.81)/g2^38 + (g2^19*t^8.81)/g1^3 + (2*g1^12*t^8.86)/g2^88 + (4*g1^5*t^8.86)/g2^31 + (3*g2^26*t^8.86)/g1^2 - (g1*t^8.92)/g2^15 + (2*g1^9*t^8.97)/g2^65 + (g1^2*t^8.97)/g2^8 + (g2^49*t^8.97)/g1^5 - t^4.35/(g2^2*y) - (g1^4*t^6.4)/(g2^30*y) - (g2^16*t^6.62)/(g1^2*y) - (g1^2*t^6.73)/(g2^18*y) - (g2^5*t^6.84)/(g1*y) - t^7.06/(g2^6*y) + (2*g1^2*t^7.32)/(g2^10*y) - (g2^6*t^7.38)/(g1^2*y) + (g1^6*t^7.43)/(g2^44*y) + (2*g1^3*t^7.54)/(g2^21*y) + (2*g2^2*t^7.65)/y + (g1^4*t^7.76)/(g2^32*y) + (2*g2^25*t^7.76)/(g1^3*y) + (3*g1*t^7.86)/(g2^9*y) + (3*g2^14*t^7.97)/(g1^2*y) + (3*g1^2*t^8.08)/(g2^20*y) + (g1^3*t^8.13)/(g2^13*y) + (2*g2^3*t^8.19)/(g1*y) + (2*g2^26*t^8.3)/(g1^4*y) + (g2^33*t^8.35)/(g1^3*y) + t^8.41/(g2^8*y) - (g1^8*t^8.45)/(g2^58*y) + (g1*t^8.46)/(g2*y) + (2*g2^15*t^8.52)/(g1^3*y) + (2*g2^22*t^8.57)/(g1^2*y) - (g1^2*t^8.67)/(g2^12*y) + (g2^4*t^8.73)/(g1^2*y) - (g1^6*t^8.78)/(g2^46*y) + (g2^11*t^8.78)/(g1*y) - (g2^34*t^8.89)/(g1^4*y) - (t^4.35*y)/g2^2 - (g1^4*t^6.4*y)/g2^30 - (g2^16*t^6.62*y)/g1^2 - (g1^2*t^6.73*y)/g2^18 - (g2^5*t^6.84*y)/g1 - (t^7.06*y)/g2^6 + (2*g1^2*t^7.32*y)/g2^10 - (g2^6*t^7.38*y)/g1^2 + (g1^6*t^7.43*y)/g2^44 + (2*g1^3*t^7.54*y)/g2^21 + 2*g2^2*t^7.65*y + (g1^4*t^7.76*y)/g2^32 + (2*g2^25*t^7.76*y)/g1^3 + (3*g1*t^7.86*y)/g2^9 + (3*g2^14*t^7.97*y)/g1^2 + (3*g1^2*t^8.08*y)/g2^20 + (g1^3*t^8.13*y)/g2^13 + (2*g2^3*t^8.19*y)/g1 + (2*g2^26*t^8.3*y)/g1^4 + (g2^33*t^8.35*y)/g1^3 + (t^8.41*y)/g2^8 - (g1^8*t^8.45*y)/g2^58 + (g1*t^8.46*y)/g2 + (2*g2^15*t^8.52*y)/g1^3 + (2*g2^22*t^8.57*y)/g1^2 - (g1^2*t^8.67*y)/g2^12 + (g2^4*t^8.73*y)/g1^2 - (g1^6*t^8.78*y)/g2^46 + (g2^11*t^8.78*y)/g1 - (g2^34*t^8.89*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
48167 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ 0.7001 0.8886 0.7878 [X:[], M:[1.1679, 1.0164, 0.8321, 0.7865, 0.7628, 0.6715], q:[0.3932, 0.4389], qb:[0.5903, 0.7746], phi:[0.4507]] t^2.01 + t^2.29 + t^2.36 + t^2.5 + t^2.7 + t^3.05 + t^3.09 + t^3.5 + t^3.85 + t^4.03 + t^4.09 + 2*t^4.3 + t^4.37 + t^4.44 + t^4.51 + t^4.58 + t^4.65 + 2*t^4.72 + t^4.78 + t^4.86 + t^4.89 + 2*t^4.99 + 2*t^5.06 + t^5.1 + t^5.2 + t^5.34 + t^5.38 + t^5.41 + t^5.45 + t^5.52 + t^5.58 + t^5.75 + 2*t^5.79 + t^5.86 - 2*t^6. - t^4.35/y - t^4.35*y detail