Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47928 | SU3adj1nf2 | $M_1\phi_1^3$ + $ q_1^2\tilde{q}_1^2$ | 1.4756 | 1.6901 | 0.8731 | [X:[], M:[0.9773], q:[0.5, 0.4773], qb:[0.5, 0.4773], phi:[0.3409]] | [X:[], M:[[3, 0, 3]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_1$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^4$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ M_1q_2\tilde{q}_1$, $ M_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_1q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$ | $\phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$ | -1 | t^2.05 + t^2.86 + 3*t^2.93 + t^3. + t^3.89 + 2*t^3.95 + t^4.02 + t^4.09 + 2*t^4.91 + 5*t^4.98 + 2*t^5.05 + 2*t^5.39 + 2*t^5.45 + t^5.73 + 3*t^5.8 + 7*t^5.86 + 2*t^5.93 - t^6. - t^6.07 + t^6.14 + 2*t^6.41 + 2*t^6.48 + t^6.75 + 5*t^6.82 + 8*t^6.89 + 5*t^6.95 + 3*t^7.02 + 2*t^7.36 + 2*t^7.43 + 2*t^7.5 + 2*t^7.57 + 3*t^7.77 + 9*t^7.84 + 16*t^7.91 + 6*t^7.98 - t^8.05 - 3*t^8.11 + t^8.18 + 2*t^8.25 + 8*t^8.32 + 6*t^8.39 - 2*t^8.45 - 4*t^8.52 - t^8.59 + 3*t^8.66 + 7*t^8.73 + 13*t^8.8 + 5*t^8.86 - 2*t^8.93 - t^4.02/y - t^5.05/y - t^6.07/y - t^6.89/y - (3*t^6.95)/y - t^7.02/y - t^7.09/y + t^7.98/y - t^8.11/y + (3*t^8.8)/y + (4*t^8.86)/y + (2*t^8.93)/y - t^4.02*y - t^5.05*y - t^6.07*y - t^6.89*y - 3*t^6.95*y - t^7.02*y - t^7.09*y + t^7.98*y - t^8.11*y + 3*t^8.8*y + 4*t^8.86*y + 2*t^8.93*y | t^2.05/(g1^2*g3^2) + g1^6*g3^6*t^2.86 + g1^6*g2*t^2.93 + g1^3*g3^3*t^2.93 + (g3^6*t^2.93)/g2 + t^3. + g1^5*g3^5*t^3.89 + (g1^5*g2*t^3.95)/g3 + (g3^5*t^3.95)/(g1*g2) + t^4.02/(g1*g3) + t^4.09/(g1^4*g3^4) + 2*g1^4*g3^4*t^4.91 + (2*g1^4*g2*t^4.98)/g3^2 + g1*g3*t^4.98 + (2*g3^4*t^4.98)/(g1^2*g2) + (2*t^5.05)/(g1^2*g3^2) + (g1^11*t^5.39)/(g2*g3) + (g2*g3^11*t^5.39)/g1 + (g1^5*t^5.45)/(g2^2*g3) + (g2^2*g3^5*t^5.45)/g1 + g1^12*g3^12*t^5.73 + g1^12*g2*g3^6*t^5.8 + g1^9*g3^9*t^5.8 + (g1^6*g3^12*t^5.8)/g2 + g1^12*g2^2*t^5.86 + g1^9*g2*g3^3*t^5.86 + 3*g1^6*g3^6*t^5.86 + (g1^3*g3^9*t^5.86)/g2 + (g3^12*t^5.86)/g2^2 + 2*g1^3*g3^3*t^5.93 - 3*t^6. + (g1^3*g2*t^6.)/g3^3 + (g3^3*t^6.)/(g1^3*g2) - t^6.07/(g1^6*g2) - (g2*t^6.07)/g3^6 + t^6.07/(g1^3*g3^3) + t^6.14/(g1^6*g3^6) + (g1^10*t^6.41)/(g2*g3^2) + (g2*g3^10*t^6.41)/g1^2 + (g1^4*t^6.48)/(g2^2*g3^2) + (g2^2*g3^4*t^6.48)/g1^2 + g1^11*g3^11*t^6.75 + 2*g1^11*g2*g3^5*t^6.82 + g1^8*g3^8*t^6.82 + (2*g1^5*g3^11*t^6.82)/g2 + (g1^11*g2^2*t^6.89)/g3 + g1^8*g2*g3^2*t^6.89 + 4*g1^5*g3^5*t^6.89 + (g1^2*g3^8*t^6.89)/g2 + (g3^11*t^6.89)/(g1*g2^2) + (g1^5*g2*t^6.95)/g3 + 3*g1^2*g3^2*t^6.95 + (g3^5*t^6.95)/(g1*g2) + (2*g1^2*g2*t^7.02)/g3^4 - t^7.02/(g1*g3) + (2*g3^2*t^7.02)/(g1^4*g2) - (g2*t^7.09)/(g1*g3^7) + (2*t^7.09)/(g1^4*g3^4) - t^7.09/(g1^7*g2*g3) + (g1^15*t^7.36)/g3^3 + (g3^15*t^7.36)/g1^3 - (g1^6*t^7.43)/g2^2 + (2*g1^9*t^7.43)/(g2*g3^3) - g2^2*g3^6*t^7.43 + (2*g2*g3^9*t^7.43)/g1^3 - (g1^6*t^7.5)/(g2*g3^6) + (2*g1^3*t^7.5)/(g2^2*g3^3) + (2*g2^2*g3^3*t^7.5)/g1^3 - (g2*g3^6*t^7.5)/g1^6 + t^7.57/(g1^3*g2^3*g3^3) + (g2^3*t^7.57)/(g1^3*g3^3) + 3*g1^10*g3^10*t^7.77 + 4*g1^10*g2*g3^4*t^7.84 + g1^7*g3^7*t^7.84 + (4*g1^4*g3^10*t^7.84)/g2 + (3*g1^10*g2^2*t^7.91)/g3^2 + g1^7*g2*g3*t^7.91 + 8*g1^4*g3^4*t^7.91 + (g1*g3^7*t^7.91)/g2 + (3*g3^10*t^7.91)/(g1^2*g2^2) + (2*g1^4*g2*t^7.98)/g3^2 + 2*g1*g3*t^7.98 + (2*g3^4*t^7.98)/(g1^2*g2) + (g1*g2*t^8.05)/g3^5 - (3*t^8.05)/(g1^2*g3^2) + (g3*t^8.05)/(g1^5*g2) - (2*g2*t^8.11)/(g1^2*g3^8) + t^8.11/(g1^5*g3^5) - (2*t^8.11)/(g1^8*g2*g3^2) + t^8.18/(g1^8*g3^8) + (g1^17*g3^5*t^8.25)/g2 + g1^5*g2*g3^17*t^8.25 + (g1^17*t^8.32)/g3 + (g1^14*g3^2*t^8.32)/g2 + (2*g1^11*g3^5*t^8.32)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.32 + g1^2*g2*g3^14*t^8.32 + (g3^17*t^8.32)/g1 + (g1^11*t^8.39)/(g2*g3) + (g1^8*g3^2*t^8.39)/g2^2 + (g1^5*g3^5*t^8.39)/g2^3 + g1^5*g2^3*g3^5*t^8.39 + g1^2*g2^2*g3^8*t^8.39 + (g2*g3^11*t^8.39)/g1 - (g1^11*t^8.45)/g3^7 + (g1^8*t^8.45)/(g2*g3^4) - (g1^5*t^8.45)/(g2^2*g3) - (g2^2*g3^5*t^8.45)/g1 + (g2*g3^8*t^8.45)/g1^4 - (g3^11*t^8.45)/g1^7 - (2*g1^5*t^8.52)/(g2*g3^7) + (g1^2*t^8.52)/(g2^2*g3^4) - t^8.52/(g1*g2^3*g3) - (g2^3*t^8.52)/(g1*g3) + (g2^2*g3^2*t^8.52)/g1^4 - (2*g2*g3^5*t^8.52)/g1^7 - t^8.59/(g1*g2^2*g3^7) - (g2^2*t^8.59)/(g1^7*g3) + g1^18*g3^18*t^8.59 + g1^18*g2*g3^12*t^8.66 + g1^15*g3^15*t^8.66 + (g1^12*g3^18*t^8.66)/g2 + g1^18*g2^2*g3^6*t^8.73 + g1^15*g2*g3^9*t^8.73 + 3*g1^12*g3^12*t^8.73 + (g1^9*g3^15*t^8.73)/g2 + (g1^6*g3^18*t^8.73)/g2^2 + g1^18*g2^3*t^8.8 + g1^15*g2^2*g3^3*t^8.8 + 2*g1^12*g2*g3^6*t^8.8 + 5*g1^9*g3^9*t^8.8 + (2*g1^6*g3^12*t^8.8)/g2 + (g1^3*g3^15*t^8.8)/g2^2 + (g3^18*t^8.8)/g2^3 + 4*g1^9*g2*g3^3*t^8.86 - 3*g1^6*g3^6*t^8.86 + (4*g1^3*g3^9*t^8.86)/g2 - 5*g1^6*g2*t^8.93 + (2*g1^9*g2^2*t^8.93)/g3^3 + 4*g1^3*g3^3*t^8.93 - (5*g3^6*t^8.93)/g2 + (2*g3^9*t^8.93)/(g1^3*g2^2) - t^4.02/(g1*g3*y) - t^5.05/(g1^2*g3^2*y) - t^6.07/(g1^3*g3^3*y) - (g1^5*g3^5*t^6.89)/y - (g1^5*g2*t^6.95)/(g3*y) - (g1^2*g3^2*t^6.95)/y - (g3^5*t^6.95)/(g1*g2*y) - t^7.02/(g1*g3*y) - t^7.09/(g1^4*g3^4*y) + (g1*g3*t^7.98)/y - t^8.11/(g1^5*g3^5*y) + (g1^12*g2*g3^6*t^8.8)/y + (g1^9*g3^9*t^8.8)/y + (g1^6*g3^12*t^8.8)/(g2*y) + (g1^9*g2*g3^3*t^8.86)/y + (2*g1^6*g3^6*t^8.86)/y + (g1^3*g3^9*t^8.86)/(g2*y) + (g1^6*g2*t^8.93)/y + (g3^6*t^8.93)/(g2*y) - (t^4.02*y)/(g1*g3) - (t^5.05*y)/(g1^2*g3^2) - (t^6.07*y)/(g1^3*g3^3) - g1^5*g3^5*t^6.89*y - (g1^5*g2*t^6.95*y)/g3 - g1^2*g3^2*t^6.95*y - (g3^5*t^6.95*y)/(g1*g2) - (t^7.02*y)/(g1*g3) - (t^7.09*y)/(g1^4*g3^4) + g1*g3*t^7.98*y - (t^8.11*y)/(g1^5*g3^5) + g1^12*g2*g3^6*t^8.8*y + g1^9*g3^9*t^8.8*y + (g1^6*g3^12*t^8.8*y)/g2 + g1^9*g2*g3^3*t^8.86*y + 2*g1^6*g3^6*t^8.86*y + (g1^3*g3^9*t^8.86*y)/g2 + g1^6*g2*t^8.93*y + (g3^6*t^8.93*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47870 | SU3adj1nf2 | $M_1\phi_1^3$ | 1.4767 | 1.6956 | 0.8709 | [X:[], M:[0.961], q:[0.4805, 0.4805], qb:[0.4805, 0.4805], phi:[0.3463]] | t^2.08 + 5*t^2.88 + 4*t^3.92 + t^4.16 + 9*t^4.96 + 4*t^5.36 + 15*t^5.77 - 4*t^6. - t^4.04/y - t^5.08/y - t^4.04*y - t^5.08*y | detail |